» Articles » PMID: 38993779

The Transformative Potential of Artificial Intelligence in Solid Organ Transplantation

Overview
Specialty General Surgery
Date 2024 Jul 12
PMID 38993779
Authors
Affiliations
Soon will be listed here.
Abstract

Solid organ transplantation confronts numerous challenges ranging from donor organ shortage to post-transplant complications. Here, we provide an overview of the latest attempts to address some of these challenges using artificial intelligence (AI). We delve into the application of machine learning in pretransplant evaluation, predicting transplant rejection, and post-operative patient outcomes. By providing a comprehensive overview of AI's current impact, this review aims to inform clinicians, researchers, and policy-makers about the transformative power of AI in enhancing solid organ transplantation and facilitating personalized medicine in transplant care.

Citing Articles

Trends in Precision Medicine and Pharmacogenetics as an Adjuvant in Establishing a Correct Immunosuppressive Therapy for Kidney Transplant: An Up-to-Date Historical Overview.

Belardi R, Pacifici F, Baldetti M, Velocci S, Minieri M, Pieri M Int J Mol Sci. 2025; 26(5).

PMID: 40076585 PMC: 11900248. DOI: 10.3390/ijms26051960.

References
1.
Truchot A, Raynaud M, Kamar N, Naesens M, Legendre C, Delahousse M . Machine learning does not outperform traditional statistical modelling for kidney allograft failure prediction. Kidney Int. 2022; 103(5):936-948. DOI: 10.1016/j.kint.2022.12.011. View

2.
Schachtner T, Reinke P . Estimated Nephron Number of the Donor Kidney: Impact on Allograft Kidney Outcomes. Transplant Proc. 2017; 49(6):1237-1243. DOI: 10.1016/j.transproceed.2017.01.086. View

3.
Korfiatis P, Denic A, Edwards M, Gregory A, Wright D, Mullan A . Automated Segmentation of Kidney Cortex and Medulla in CT Images: A Multisite Evaluation Study. J Am Soc Nephrol. 2021; 33(2):420-430. PMC: 8819990. DOI: 10.1681/ASN.2021030404. View

4.
Chen C, Chen B, Yang J, Li X, Peng X, Feng Y . Development and validation of a practical machine learning model to predict sepsis after liver transplantation. Ann Med. 2023; 55(1):624-633. PMC: 9937004. DOI: 10.1080/07853890.2023.2179104. View

5.
Min S, Papaz T, Lambert A, Allen U, Birk P, Blydt-Hansen T . An Integrated Clinical and Genetic Prediction Model for Tacrolimus Levels in Pediatric Solid Organ Transplant Recipients. Transplantation. 2021; 106(3):597-606. PMC: 8862776. DOI: 10.1097/TP.0000000000003700. View