6.
Wu-Chuang A, Mateos-Hernandez L, Maitre A, Rego R, Sima R, Porcelli S
. Microbiota perturbation by anti-microbiota vaccine reduces the colonization of Borrelia afzelii in Ixodes ricinus. Microbiome. 2023; 11(1):151.
PMC: 10364381.
DOI: 10.1186/s40168-023-01599-7.
View
7.
Michelet L, Delannoy S, Devillers E, Umhang G, Aspan A, Juremalm M
. High-throughput screening of tick-borne pathogens in Europe. Front Cell Infect Microbiol. 2014; 4:103.
PMC: 4114295.
DOI: 10.3389/fcimb.2014.00103.
View
8.
Karvonen A, Jokela J, Laine A
. Importance of Sequence and Timing in Parasite Coinfections. Trends Parasitol. 2018; 35(2):109-118.
DOI: 10.1016/j.pt.2018.11.007.
View
9.
Moniuszko A, Dunaj J, Swiecicka I, Zambrowski G, Chmielewska-Badora J, Zukiewicz-Sobczak W
. Co-infections with Borrelia species, Anaplasma phagocytophilum and Babesia spp. in patients with tick-borne encephalitis. Eur J Clin Microbiol Infect Dis. 2014; 33(10):1835-41.
PMC: 4182641.
DOI: 10.1007/s10096-014-2134-7.
View
10.
Hennechart-Collette C, Gonzalez G, Fourniol L, Fraisse A, Beck C, Moutailler S
. Method for tick-borne encephalitis virus detection in raw milk products. Food Microbiol. 2022; 104:104003.
DOI: 10.1016/j.fm.2022.104003.
View
11.
Cirimotich C, Dong Y, Clayton A, Sandiford S, Souza-Neto J, Mulenga M
. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 2011; 332(6031):855-8.
PMC: 4154605.
DOI: 10.1126/science.1201618.
View
12.
Clark D, Brault A, Hunsperger E
. The contribution of rodent models to the pathological assessment of flaviviral infections of the central nervous system. Arch Virol. 2012; 157(8):1423-40.
PMC: 4581843.
DOI: 10.1007/s00705-012-1337-4.
View
13.
Casselli T, Divan A, Vomhof-DeKrey E, Tourand Y, Pecoraro H, Brissette C
. A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog. 2021; 17(2):e1009256.
PMC: 7877756.
DOI: 10.1371/journal.ppat.1009256.
View
14.
Gomez-Chamorro A, Hodzic A, King K, Cabezas-Cruz A
. Ecological and evolutionary perspectives on tick-borne pathogen co-infections. Curr Res Parasitol Vector Borne Dis. 2022; 1:100049.
PMC: 8906131.
DOI: 10.1016/j.crpvbd.2021.100049.
View
15.
Knapp K, Rice N
. Human Coinfection with Borrelia burgdorferi and Babesia microti in the United States. J Parasitol Res. 2015; 2015:587131.
PMC: 4677215.
DOI: 10.1155/2015/587131.
View
16.
Belongia E
. Epidemiology and impact of coinfections acquired from Ixodes ticks. Vector Borne Zoonotic Dis. 2003; 2(4):265-73.
DOI: 10.1089/153036602321653851.
View
17.
Gadila S, Rosoklija G, Dwork A, Fallon B, Embers M
. Detecting Borrelia Spirochetes: A Case Study With Validation Among Autopsy Specimens. Front Neurol. 2021; 12:628045.
PMC: 8141553.
DOI: 10.3389/fneur.2021.628045.
View
18.
Dai X, Shang G, Lu S, Yang J, Xu J
. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg Microbes Infect. 2018; 7(1):74.
PMC: 5915441.
DOI: 10.1038/s41426-018-0081-6.
View
19.
Vaumourin E, Vourch G, Gasqui P, Vayssier-Taussat M
. The importance of multiparasitism: examining the consequences of co-infections for human and animal health. Parasit Vectors. 2015; 8:545.
PMC: 4617890.
DOI: 10.1186/s13071-015-1167-9.
View
20.
Thomas V, Anguita J, Barthold S, Fikrig E
. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect Immun. 2001; 69(5):3359-71.
PMC: 98295.
DOI: 10.1128/IAI.69.5.3359-3371.2001.
View