6.
Qi J, Sun C, Zebibula A, Zhang H, Kwok R, Zhao X
. Real-Time and High-Resolution Bioimaging with Bright Aggregation-Induced Emission Dots in Short-Wave Infrared Region. Adv Mater. 2018; 30(12):e1706856.
DOI: 10.1002/adma.201706856.
View
7.
Balazs A, Emrick T, Russell T
. Nanoparticle polymer composites: where two small worlds meet. Science. 2006; 314(5802):1107-10.
DOI: 10.1126/science.1130557.
View
8.
Williams G, Ishige R, Cromwell O, Chung J, Takahara A, Guan Z
. Mechanically Robust and Self-Healable Superlattice Nanocomposites by Self-Assembly of Single-Component "Sticky" Polymer-Grafted Nanoparticles. Adv Mater. 2015; 27(26):3934-41.
DOI: 10.1002/adma.201500927.
View
9.
Matyjaszewski K, Dong H, Jakubowski W, Pietrasik J, Kusumo A
. Grafting from surfaces for "everyone": ARGET ATRP in the presence of air. Langmuir. 2007; 23(8):4528-31.
DOI: 10.1021/la063402e.
View
10.
Messina M, Messina K, Bhattacharya A, Montgomery H, Maynard H
. Preparation of Biomolecule-Polymer Conjugates by Grafting-From Using ATRP, RAFT, or ROMP. Prog Polym Sci. 2020; 100.
PMC: 7453843.
DOI: 10.1016/j.progpolymsci.2019.101186.
View
11.
Margulis-Goshen K, Netivi H, Major D, Gradzielski M, Raviv U, Magdassi S
. Formation of organic nanoparticles from volatile microemulsions. J Colloid Interface Sci. 2009; 342(2):283-92.
DOI: 10.1016/j.jcis.2009.10.024.
View
12.
Karg M, Pich A, Hellweg T, Hoare T, Lyon L, Crassous J
. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. Langmuir. 2019; 35(19):6231-6255.
DOI: 10.1021/acs.langmuir.8b04304.
View
13.
Le Z, Chen Y, Han H, Tian H, Zhao P, Yang C
. Hydrogen-Bonded Tannic Acid-Based Anticancer Nanoparticle for Enhancement of Oral Chemotherapy. ACS Appl Mater Interfaces. 2018; 10(49):42186-42197.
DOI: 10.1021/acsami.8b18979.
View
14.
Guo B, Middha E, Liu B
. Solvent Magic for Organic Particles. ACS Nano. 2019; 13(3):2675-2680.
DOI: 10.1021/acsnano.9b01487.
View
15.
Yin R, Zhao Y, Jeong J, Tarnsangpradit J, Liu T, An S
. Composition-Orientation Induced Mechanical Synergy in Nanoparticle Brushes with Grafted Gradient Copolymers. Macromolecules. 2023; 56(23):9626-9635.
PMC: 10720466.
DOI: 10.1021/acs.macromol.3c01799.
View
16.
Zoppe J, Ataman N, Mocny P, Wang J, Moraes J, Klok H
. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev. 2017; 117(3):1105-1318.
DOI: 10.1021/acs.chemrev.6b00314.
View
17.
Al Najjar T, Allam N, El Sawy E
. Anionic/nonionic surfactants for controlled synthesis of highly concentrated sub-50 nm polystyrene spheres. Nanoscale Adv. 2022; 3(19):5626-5635.
PMC: 9417686.
DOI: 10.1039/d1na00438g.
View
18.
Choi J, Hui C, Schmitt M, Pietrasik J, Margel S, Matyjazsewski K
. Effect of polymer-graft modification on the order formation in particle assembly structures. Langmuir. 2013; 29(21):6452-9.
DOI: 10.1021/la4004406.
View
19.
Jiang Y, Pu K
. Advanced Photoacoustic Imaging Applications of Near-Infrared Absorbing Organic Nanoparticles. Small. 2017; 13(30).
DOI: 10.1002/smll.201700710.
View
20.
Morgese G, Shirmardi Shaghasemi B, Causin V, Zenobi-Wong M, Ramakrishna S, Reimhult E
. Next-Generation Polymer Shells for Inorganic Nanoparticles are Highly Compact, Ultra-Dense, and Long-Lasting Cyclic Brushes. Angew Chem Int Ed Engl. 2017; 56(16):4507-4511.
DOI: 10.1002/anie.201700196.
View