» Articles » PMID: 38984951

Upregulation of Circ-IGF1R Increased Therapeutic Effect of Hypoxia-pretreated ADSC-derived Extracellular Vesicle by Regulating MiR-503-5p/HK2/VEGFA Axis

Overview
Journal J Cell Mol Med
Date 2024 Jul 10
PMID 38984951
Authors
Affiliations
Soon will be listed here.
Abstract

Diabetes mellitus is a major cause of blindness and chronic ulcers in the working-age population worldwide. Wound healing is deeply dependent on neovascularization to restore blood flow. Former research has found that differentially expressed circular RNAs (circRNAs) are associated with hyperglycaemia-induced endothelial cell damage, and hypoxia-pretreated adipose-derived stem cells (ADSCs)-extracellular vesicle (HEV) transplants have a more therapeutic effect to enhance wound healing in diabetic mice by delivery circRNA. The current investigation employed high-throughput sequencing to identify circRNAs that are abnormally expressed between EV and HEV. The regulatory mechanism and predicted targets of one differentially expressed circRNA, circ-IGF1R, were investigated utilizing bioinformatics analyses, luciferase reporter assays, angiogenic differentiation assays, flow cytometric apoptosis analysis and RT-qPCR. Circ-IGF1R expression increased in HEV, and downregulation of circ-IGF1R suppressed and reversed the promotion effect of HEV on angiogenesis in ulcerated tissue. Bioinformatics analyses and luciferase reporter assays confirmed that miR-503-5p was the downstream target of circ-IGF1R, and inhibiting miR-503-5p restored the promotion effect of HEV on angiogenesis after circ-IGF1R silence. The study also found that miR-503-5p can interact with 3'-UTR of both HK2 and VEGFA. Overexpression of HK2 or VEGFA restored the promotion effect of HExo on angiogenesis after circ-IGF1R silence. Overexpression miR-503-5p or silence HK2/VEGFA reversed the protective effect of circ-IGF1R to MLMECs angiogenic differentiation. Overexpression of circ-IGF1R increased the protective effect of HEV on the promotion of wound healing in mice with diabetes. Circ-IGF1R promotes HIF-1α expression through miR-503-5p sponging. Our data demonstrate that circ-IGF1R overexpression EVs from ADSCs suppress high glucose-induced endothelial cell damage by regulating miR-503-5p/HK2/VEGFA axis.

Citing Articles

Could hypoxic conditioning augment the potential of mesenchymal stromal cell-derived extracellular vesicles as a treatment for type 1 diabetes?.

Forkan C, Shrestha A, Yu A, Chuang C, Pociot F, Yarani R Stem Cell Res Ther. 2025; 16(1):37.

PMID: 39901225 PMC: 11792614. DOI: 10.1186/s13287-025-04153-4.

References
1.
Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y . Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 2020; 11(2):145. PMC: 7039970. DOI: 10.1038/s41419-020-2336-0. View

2.
Del Cuore A, Pipitone R, Casuccio A, Mazzola M, Puleo M, Pacinella G . Metabolic memory in diabetic foot syndrome (DFS): MICRO-RNAS, single nucleotide polymorphisms (SNPs) frequency and their relationship with indices of endothelial function and adipo-inflammatory dysfunction. Cardiovasc Diabetol. 2023; 22(1):148. PMC: 10294440. DOI: 10.1186/s12933-023-01880-x. View

3.
Gurtner G, Werner S, Barrandon Y, Longaker M . Wound repair and regeneration. Nature. 2008; 453(7193):314-21. DOI: 10.1038/nature07039. View

4.
Falanga V . Wound healing and its impairment in the diabetic foot. Lancet. 2005; 366(9498):1736-43. DOI: 10.1016/S0140-6736(05)67700-8. View

5.
Singer A, Clark R . Cutaneous wound healing. N Engl J Med. 1999; 341(10):738-46. DOI: 10.1056/NEJM199909023411006. View