6.
Ribeiro J, Franklin J, Fox K, Bentley K, Kleiman E, Chang B
. Self-injurious thoughts and behaviors as risk factors for future suicide ideation, attempts, and death: a meta-analysis of longitudinal studies. Psychol Med. 2015; 46(2):225-36.
PMC: 4774896.
DOI: 10.1017/S0033291715001804.
View
7.
Jung J, Park S, Kim E, Na K, Kim Y, Kim K
. Prediction models for high risk of suicide in Korean adolescents using machine learning techniques. PLoS One. 2019; 14(6):e0217639.
PMC: 6553749.
DOI: 10.1371/journal.pone.0217639.
View
8.
Oh B, Yun J, Yeo E, Kim D, Kim J, Cho B
. Prediction of Suicidal Ideation among Korean Adults Using Machine Learning: A Cross-Sectional Study. Psychiatry Investig. 2020; 17(4):331-340.
PMC: 7176567.
DOI: 10.30773/pi.2019.0270.
View
9.
Nordin N, Zainol Z, Noor M, Chan L
. Suicidal behaviour prediction models using machine learning techniques: A systematic review. Artif Intell Med. 2022; 132:102395.
DOI: 10.1016/j.artmed.2022.102395.
View
10.
Zhang X, Al Jurdi R, Zoghbi A, Chen D, Xiu M, Tan Y
. Prevalence, demographic and clinical correlates of suicide attempts in Chinese medicated chronic inpatients with schizophrenia. J Psychiatr Res. 2013; 47(10):1370-5.
DOI: 10.1016/j.jpsychires.2013.05.024.
View
11.
Nasralla M, Khattak S, Ur Rehman I, Iqbal M
. Exploring the Role of 6G Technology in Enhancing Quality of Experience for m-Health Multimedia Applications: A Comprehensive Survey. Sensors (Basel). 2023; 23(13).
PMC: 10347022.
DOI: 10.3390/s23135882.
View
12.
Velupillai S, Hadlaczky G, Baca-Garcia E, Gorrell G, Werbeloff N, Nguyen D
. Risk Assessment Tools and Data-Driven Approaches for Predicting and Preventing Suicidal Behavior. Front Psychiatry. 2019; 10:36.
PMC: 6381841.
DOI: 10.3389/fpsyt.2019.00036.
View
13.
Nock M, Borges G, Bromet E, Alonso J, Angermeyer M, Beautrais A
. Cross-national prevalence and risk factors for suicidal ideation, plans and attempts. Br J Psychiatry. 2008; 192(2):98-105.
PMC: 2259024.
DOI: 10.1192/bjp.bp.107.040113.
View
14.
Kirlic N, Akeman E, DeVille D, Yeh H, Cosgrove K, McDermott T
. A machine learning analysis of risk and protective factors of suicidal thoughts and behaviors in college students. J Am Coll Health. 2021; 71(6):1863-1872.
PMC: 8782938.
DOI: 10.1080/07448481.2021.1947841.
View
15.
Burke T, Jacobucci R, Ammerman B, Alloy L, Diamond G
. Using machine learning to classify suicide attempt history among youth in medical care settings. J Affect Disord. 2020; 268:206-214.
DOI: 10.1016/j.jad.2020.02.048.
View
16.
Kim S, Lee H, Lee K
. Detecting suicidal risk using MMPI-2 based on machine learning algorithm. Sci Rep. 2021; 11(1):15310.
PMC: 8319391.
DOI: 10.1038/s41598-021-94839-5.
View
17.
Hettige N, Nguyen T, Yuan C, Rajakulendran T, Baddour J, Bhagwat N
. Classification of suicide attempters in schizophrenia using sociocultural and clinical features: A machine learning approach. Gen Hosp Psychiatry. 2017; 47:20-28.
DOI: 10.1016/j.genhosppsych.2017.03.001.
View
18.
Hegerl U
. Prevention of suicidal behavior. Dialogues Clin Neurosci. 2016; 18(2):183-90.
PMC: 4969705.
View
19.
Heikkinen M, Aro H, Lonnqvist J
. Recent life events, social support and suicide. Acta Psychiatr Scand Suppl. 1994; 377:65-72.
DOI: 10.1111/j.1600-0447.1994.tb05805.x.
View
20.
Nordin N, Zainol Z, Noor M, Fong C
. A comparative study of machine learning techniques for suicide attempts predictive model. Health Informatics J. 2021; 27(1):1460458221989395.
DOI: 10.1177/1460458221989395.
View