6.
Wan W, Seth P
. The Medicinal Chemistry of Therapeutic Oligonucleotides. J Med Chem. 2016; 59(21):9645-9667.
DOI: 10.1021/acs.jmedchem.6b00551.
View
7.
Moumne L, Marie A, Crouvezier N
. Oligonucleotide Therapeutics: From Discovery and Development to Patentability. Pharmaceutics. 2022; 14(2).
PMC: 8876811.
DOI: 10.3390/pharmaceutics14020260.
View
8.
Palframan M, Alharthy R, Powalowska P, Hayes C
. Synthesis of triazole-linked morpholino oligonucleotides via Cu(I) catalysed cycloaddition. Org Biomol Chem. 2016; 14(11):3112-9.
PMC: 5047124.
DOI: 10.1039/c6ob00007j.
View
9.
Yahara A, Shrestha A, Yamamoto T, Hari Y, Osawa T, Yamaguchi M
. Amido-bridged nucleic acids (AmNAs): synthesis, duplex stability, nuclease resistance, and in vitro antisense potency. Chembiochem. 2012; 13(17):2513-6.
DOI: 10.1002/cbic.201200506.
View
10.
Osawa T, Hitomi Y, Wakita S, Kim H, Ito Y, Hari Y
. Synthesis and hybridizing properties of isoDNAs including 3'-O,4'-C-ethyleneoxy-bridged 5-methyluridine derivatives. Bioorg Med Chem. 2018; 26(14):3875-3881.
DOI: 10.1016/j.bmc.2018.05.043.
View
11.
Hanusek J, Russell M, Laws A, Jansa P, Atherton J, Fettes K
. Mechanism of the sulfurisation of phosphines and phosphites using 3-amino-1,2,4-dithiazole-5-thione (xanthane hydride). Org Biomol Chem. 2007; 5(3):478-84.
DOI: 10.1039/b616298c.
View
12.
Eckstein F
. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 2014; 24(6):374-87.
DOI: 10.1089/nat.2014.0506.
View
13.
Seo Y, Jeong H, Bang E, Hwang G, Jung J, Jang S
. Cholesterol-linked fluorescent molecular beacons with enhanced cell permeability. Bioconjug Chem. 2006; 17(5):1151-5.
DOI: 10.1021/bc060078q.
View
14.
Kodra J, Kehler J, Dahl O
. Stability of oligodeoxynucleoside phosphorodithioates and phosphorothioates in aqueous ammonia. Nucleic Acids Res. 1995; 23(16):3349-50.
PMC: 307200.
DOI: 10.1093/nar/23.16.3349.
View
15.
Reese C, Song Q
. Avoidance of sulfur loss during ammonia treatment of oligonucleotide phosphorothioates. Nucleic Acids Res. 1997; 25(14):2943-4.
PMC: 146813.
DOI: 10.1093/nar/25.14.2943.
View
16.
Karale K, Bollmark M, Stulz R, Honcharenko D, Tedebark U, Stromberg R
. A Study on Synthesis and Upscaling of 2'--AECM-5-methyl Pyrimidine Phosphoramidites for Oligonucleotide Synthesis. Molecules. 2021; 26(22).
PMC: 8619030.
DOI: 10.3390/molecules26226927.
View
17.
Maydanovych O, Easterwood L, Cui T, Veliz E, Pokharel S, Beal P
. Probing adenosine-to-inosine editing reactions using RNA-containing nucleoside analogs. Methods Enzymol. 2007; 424:369-86.
DOI: 10.1016/S0076-6879(07)24017-0.
View
18.
Hari Y, Osawa T, Kotobuki Y, Yahara A, Shrestha A, Obika S
. Synthesis and properties of thymidines with six-membered amide bridge. Bioorg Med Chem. 2013; 21(14):4405-12.
DOI: 10.1016/j.bmc.2013.04.049.
View
19.
Khvorova A, Watts J
. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017; 35(3):238-248.
PMC: 5517098.
DOI: 10.1038/nbt.3765.
View
20.
Ezzat K, Aoki Y, Koo T, McClorey G, Benner L, Coenen-Stass A
. Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides. Nano Lett. 2015; 15(7):4364-73.
PMC: 6415796.
DOI: 10.1021/acs.nanolett.5b00490.
View