6.
Loera-Muro A, Guerrero-Barrera A, Tremblay D N Y, Hathroubi S, Angulo C
. Bacterial biofilm-derived antigens: a new strategy for vaccine development against infectious diseases. Expert Rev Vaccines. 2021; 20(4):385-396.
DOI: 10.1080/14760584.2021.1892492.
View
7.
Hunter R, Actor J, Hwang S, Karev V, Jagannath C
. Pathogenesis of post primary tuberculosis: immunity and hypersensitivity in the development of cavities. Ann Clin Lab Sci. 2014; 44(4):365-87.
View
8.
Pang J, Layre E, Sweet L, Sherrid A, Moody D, Ojha A
. The polyketide Pks1 contributes to biofilm formation in Mycobacterium tuberculosis. J Bacteriol. 2011; 194(3):715-21.
PMC: 3264095.
DOI: 10.1128/JB.06304-11.
View
9.
Kozakiewicz L, Phuah J, Flynn J, Chan J
. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Adv Exp Med Biol. 2013; 783:225-50.
PMC: 4184189.
DOI: 10.1007/978-1-4614-6111-1_12.
View
10.
Yang S, Sui S, Qin Y, Chen H, Sha S, Liu X
. Protein O-mannosyltransferase Rv1002c contributes to low cell permeability, biofilm formation in vitro, and mycobacterial survival in mice. APMIS. 2022; 130(3):181-192.
DOI: 10.1111/apm.13204.
View
11.
Moser C, Jensen P, Thomsen K, Kolpen M, Rybtke M, Lauland A
. Immune Responses to Biofilm Infections. Front Immunol. 2021; 12:625597.
PMC: 7937708.
DOI: 10.3389/fimmu.2021.625597.
View
12.
Segura-Cerda C, Aceves-Sanchez M, Marquina-Castillo B, Mata-Espinoza D, Barrios-Payan J, Vega-Dominguez P
. Immune response elicited by two rBCG strains devoid of genes involved in c-di-GMP metabolism affect protection versus challenge with M. tuberculosis strains of different virulence. Vaccine. 2018; 36(16):2069-2078.
DOI: 10.1016/j.vaccine.2018.03.014.
View
13.
Ma F, Zhou H, Yang Z, Wang C, An Y, Ni L
. Gene expression profile analysis and target gene discovery of Mycobacterium tuberculosis biofilm. Appl Microbiol Biotechnol. 2021; 105(12):5123-5134.
DOI: 10.1007/s00253-021-11361-4.
View
14.
Kalera K, Liu R, Lim J, Pathirage R, Swanson D, Johnson U
. Targeting Persistence through Inhibition of the Trehalose Catalytic Shift. ACS Infect Dis. 2024; 10(4):1391-1404.
PMC: 11019547.
DOI: 10.1021/acsinfecdis.4c00138.
View
15.
Batoni G, Martinez-Pomares L, Esin S
. Editorial: Immune Response to Biofilms. Front Immunol. 2021; 12:696356.
PMC: 8215378.
DOI: 10.3389/fimmu.2021.696356.
View
16.
Netea M, Schlitzer A, Placek K, Joosten L, Schultze J
. Innate and Adaptive Immune Memory: an Evolutionary Continuum in the Host's Response to Pathogens. Cell Host Microbe. 2019; 25(1):13-26.
DOI: 10.1016/j.chom.2018.12.006.
View
17.
Ben-Kahla I, Al-Hajoj S
. Drug-resistant tuberculosis viewed from bacterial and host genomes. Int J Antimicrob Agents. 2016; 48(4):353-60.
DOI: 10.1016/j.ijantimicag.2016.07.010.
View
18.
Lu Y, Barreira-Silva P, Boyce S, Powers J, Cavallo K, Behar S
. CD4 T cell help prevents CD8 T cell exhaustion and promotes control of Mycobacterium tuberculosis infection. Cell Rep. 2021; 36(11):109696.
PMC: 8466141.
DOI: 10.1016/j.celrep.2021.109696.
View
19.
Tebruegge M, Ritz N, Donath S, Dutta B, Forbes B, Clifford V
. Mycobacteria-Specific Mono- and Polyfunctional CD4+ T Cell Profiles in Children With Latent and Active Tuberculosis: A Prospective Proof-of-Concept Study. Front Immunol. 2019; 10:431.
PMC: 6459895.
DOI: 10.3389/fimmu.2019.00431.
View
20.
Kaya E, Grassi L, Benedetti A, Maisetta G, Pileggi C, Di Luca M
. Interaction of Biofilms With Human Peripheral Blood Mononuclear Cells. Front Cell Infect Microbiol. 2020; 10:187.
PMC: 7216684.
DOI: 10.3389/fcimb.2020.00187.
View