» Articles » PMID: 38974714

Gene Editing Therapy for Cardiovascular Diseases

Overview
Journal MedComm (2020)
Specialty Health Services
Date 2024 Jul 8
PMID 38974714
Authors
Affiliations
Soon will be listed here.
Abstract

The development of gene editing tools has been a significant area of research in the life sciences for nearly 30 years. These tools have been widely utilized in disease detection and mechanism research. In the new century, they have shown potential in addressing various scientific challenges and saving lives through gene editing therapies, particularly in combating cardiovascular disease (CVD). The rapid advancement of gene editing therapies has provided optimism for CVD patients. The progress of gene editing therapy for CVDs is a comprehensive reflection of the practical implementation of gene editing technology in both clinical and basic research settings, as well as the steady advancement of research and treatment of CVDs. This article provides an overview of the commonly utilized DNA-targeted gene editing tools developed thus far, with a specific focus on the application of these tools, particularly the clustered regularly interspaced short palindromic repeat/CRISPR-associated genes (Cas) (CRISPR/Cas) system, in CVD gene editing therapy. It also delves into the challenges and limitations of current gene editing therapies, while summarizing ongoing research and clinical trials related to CVD. The aim is to facilitate further exploration by relevant researchers by summarizing the successful applications of gene editing tools in the field of CVD.

Citing Articles

From Bench to Bedside: Translating Cellular Rejuvenation Therapies into Clinical Applications.

Saliev T, Singh P Cells. 2025; 13(24.

PMID: 39768144 PMC: 11674796. DOI: 10.3390/cells13242052.

References
1.
Esvelt K, Carlson J, Liu D . A system for the continuous directed evolution of biomolecules. Nature. 2011; 472(7344):499-503. PMC: 3084352. DOI: 10.1038/nature09929. View

2.
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S . Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009; 326(5959):1509-12. DOI: 10.1126/science.1178811. View

3.
Ding Q, Strong A, Patel K, Ng S, Gosis B, Regan S . Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014; 115(5):488-92. PMC: 4134749. DOI: 10.1161/CIRCRESAHA.115.304351. View

4.
Hino T, Omura S, Nakagawa R, Togashi T, Takeda S, Hiramoto T . An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell. 2023; 186(22):4920-4935.e23. DOI: 10.1016/j.cell.2023.08.031. View

5.
Visseren F, Mach F, Smulders Y, Carballo D, Koskinas K, Back M . 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021; 42(34):3227-3337. DOI: 10.1093/eurheartj/ehab484. View