6.
Cullen J, McQuilten H, Quinn K, Olshansky M, Russ B, Morey A
. CD4 T help promotes influenza virus-specific CD8 T cell memory by limiting metabolic dysfunction. Proc Natl Acad Sci U S A. 2019; 116(10):4481-4488.
PMC: 6410826.
DOI: 10.1073/pnas.1808849116.
View
7.
Hashimoto M, Kamphorst A, Im S, Kissick H, Pillai R, Ramalingam S
. CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions. Annu Rev Med. 2018; 69:301-318.
DOI: 10.1146/annurev-med-012017-043208.
View
8.
Fuse S, Tsai C, Molloy M, Allie S, Zhang W, Yagita H
. Recall responses by helpless memory CD8+ T cells are restricted by the up-regulation of PD-1. J Immunol. 2009; 182(7):4244-54.
PMC: 2713929.
DOI: 10.4049/jimmunol.0802041.
View
9.
Jazayeri S, Poh C
. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines (Basel). 2019; 7(4).
PMC: 6963725.
DOI: 10.3390/vaccines7040169.
View
10.
Choi H, Lee H, Sohn H, Kim T
. CD40 ligand stimulation affects the number and memory phenotypes of human peripheral CD8 T cells. BMC Immunol. 2023; 24(1):15.
PMC: 10311846.
DOI: 10.1186/s12865-023-00547-2.
View
11.
Si Y, Wen Y, Kelly S, Chong A, Collier J
. Intranasal delivery of adjuvant-free peptide nanofibers elicits resident CD8 T cell responses. J Control Release. 2018; 282:120-130.
PMC: 6309200.
DOI: 10.1016/j.jconrel.2018.04.031.
View
12.
Prigge A, Ma R, Coates B, Singer B, Ridge K
. Age-Dependent Differences in T-Cell Responses to Influenza A Virus. Am J Respir Cell Mol Biol. 2020; 63(4):415-423.
PMC: 7528914.
DOI: 10.1165/rcmb.2020-0169TR.
View
13.
Assarsson E, Bui H, Sidney J, Zhang Q, Glenn J, Oseroff C
. Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. J Virol. 2008; 82(24):12241-51.
PMC: 2593359.
DOI: 10.1128/JVI.01563-08.
View
14.
Restuccia A, Hudalla G
. Tuning carbohydrate density enhances protein binding and inhibition by glycosylated β-sheet peptide nanofibers. Biomater Sci. 2018; 6(9):2327-2335.
DOI: 10.1039/c8bm00533h.
View
15.
Kervevan J, Chakrabarti L
. Role of CD4+ T Cells in the Control of Viral Infections: Recent Advances and Open Questions. Int J Mol Sci. 2021; 22(2).
PMC: 7825705.
DOI: 10.3390/ijms22020523.
View
16.
Jang Y, Seong B
. The Quest for a Truly Universal Influenza Vaccine. Front Cell Infect Microbiol. 2019; 9:344.
PMC: 6795694.
DOI: 10.3389/fcimb.2019.00344.
View
17.
Li J, Zhang Y, Zhang X, Liu L
. Influenza and Universal Vaccine Research in China. Viruses. 2023; 15(1).
PMC: 9861666.
DOI: 10.3390/v15010116.
View
18.
Comber L, O Murchu E, Jordan K, Hawkshaw S, Marshall L, ONeill M
. Systematic review of the efficacy, effectiveness and safety of high-dose seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age. Rev Med Virol. 2022; 33(3):e2330.
DOI: 10.1002/rmv.2330.
View
19.
Hensen L, Illing P, Clemens E, Nguyen T, Koutsakos M, van de Sandt C
. CD8 T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nat Commun. 2021; 12(1):2931.
PMC: 8132304.
DOI: 10.1038/s41467-021-23212-x.
View
20.
Singh-Jasuja H, Toes R, Spee P, Munz C, Hilf N, Schoenberger S
. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med. 2000; 191(11):1965-74.
PMC: 2213530.
DOI: 10.1084/jem.191.11.1965.
View