6.
Erickson B, Korfiatis P, Akkus Z, Kline T
. Machine Learning for Medical Imaging. Radiographics. 2017; 37(2):505-515.
PMC: 5375621.
DOI: 10.1148/rg.2017160130.
View
7.
McKinney S, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H
. International evaluation of an AI system for breast cancer screening. Nature. 2020; 577(7788):89-94.
DOI: 10.1038/s41586-019-1799-6.
View
8.
Wagner M, Namdar K, Biswas A, Monah S, Khalvati F, Ertl-Wagner B
. Radiomics, machine learning, and artificial intelligence-what the neuroradiologist needs to know. Neuroradiology. 2021; 63(12):1957-1967.
PMC: 8449698.
DOI: 10.1007/s00234-021-02813-9.
View
9.
Lambin P, Leijenaar R, Deist T, Peerlings J, de Jong E, van Timmeren J
. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017; 14(12):749-762.
DOI: 10.1038/nrclinonc.2017.141.
View
10.
Ertl-Wagner B, Khalvati F
. The data behind the image-Deep learning and its potential impact in neuro-oncological imaging. Neuro Oncol. 2021; 24(2):300-301.
PMC: 8804883.
DOI: 10.1093/neuonc/noab249.
View
11.
Chan H, Samala R, Hadjiiski L, Zhou C
. Deep Learning in Medical Image Analysis. Adv Exp Med Biol. 2020; 1213:3-21.
PMC: 7442218.
DOI: 10.1007/978-3-030-33128-3_1.
View
12.
Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C
. Radiomic versus Convolutional Neural Networks Analysis for Classification of Contrast-enhancing Lesions at Multiparametric Breast MRI. Radiology. 2018; 290(2):290-297.
DOI: 10.1148/radiol.2018181352.
View
13.
Sun Q, Lin X, Zhao Y, Li L, Yan K, Liang D
. Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don't Forget the Peritumoral Region. Front Oncol. 2020; 10:53.
PMC: 7006026.
DOI: 10.3389/fonc.2020.00053.
View
14.
Orlhac F, Nioche C, Klyuzhin I, Rahmim A, Buvat I
. Radiomics in PET Imaging:: A Practical Guide for Newcomers. PET Clin. 2021; 16(4):597-612.
DOI: 10.1016/j.cpet.2021.06.007.
View
15.
Yamashita R, Nishio M, Do R, Togashi K
. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018; 9(4):611-629.
PMC: 6108980.
DOI: 10.1007/s13244-018-0639-9.
View
16.
Klyuzhin I, Xu Y, Ortiz A, Ferres J, Hamarneh G, Rahmim A
. Testing the Ability of Convolutional Neural Networks to Learn Radiomic Features. Comput Methods Programs Biomed. 2022; 219:106750.
DOI: 10.1016/j.cmpb.2022.106750.
View
17.
Brandao L, Poussaint T
. Pediatric brain tumors. Neuroimaging Clin N Am. 2013; 23(3):499-525.
DOI: 10.1016/j.nic.2013.03.003.
View
18.
Panigrahy A, Bluml S
. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI). J Child Neurol. 2009; 24(11):1343-65.
DOI: 10.1177/0883073809342129.
View
19.
Poretti A, Meoded A, Huisman T
. Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging. 2011; 35(1):32-47.
DOI: 10.1002/jmri.22722.
View
20.
Yang W, Lee R, Hung A, Young C, Sattari S, Urrutia V
. Cost-Effectiveness of a Direct-Aspiration First-Pass Technique versus Stent Retriever in Mechanical Thrombectomy. World Neurosurg. 2023; 183:e495-e501.
DOI: 10.1016/j.wneu.2023.12.129.
View