6.
Schuler M, Rose S
. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies. Am J Epidemiol. 2016; 185(1):65-73.
DOI: 10.1093/aje/kww165.
View
7.
Inoue K, Nianogo R, Telesca D, Goto A, Khachadourian V, Tsugawa Y
. Low HbA1c levels and all-cause or cardiovascular mortality among people without diabetes: the US National Health and Nutrition Examination Survey 1999-2015. Int J Epidemiol. 2020; 50(4):1373-1383.
PMC: 8562330.
DOI: 10.1093/ije/dyaa263.
View
8.
Shiba K, Kawahara T
. Using Propensity Scores for Causal Inference: Pitfalls and Tips. J Epidemiol. 2021; 31(8):457-463.
PMC: 8275441.
DOI: 10.2188/jea.JE20210145.
View
9.
Inoue K, Seeman T, Horwich T, Budoff M, Watson K
. Heterogeneity in the Association Between the Presence of Coronary Artery Calcium and Cardiovascular Events: A Machine-Learning Approach in the MESA Study. Circulation. 2022; 147(2):132-141.
PMC: 9812415.
DOI: 10.1161/CIRCULATIONAHA.122.062626.
View
10.
Suzuki E, Shinozaki T, Yamamoto E
. Causal Diagrams: Pitfalls and Tips. J Epidemiol. 2020; 30(4):153-162.
PMC: 7064555.
DOI: 10.2188/jea.JE20190192.
View
11.
Voight B, Peloso G, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen M
. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012; 380(9841):572-80.
PMC: 3419820.
DOI: 10.1016/S0140-6736(12)60312-2.
View
12.
Austin P
. Using Ensemble-Based Methods for Directly Estimating Causal Effects: An Investigation of Tree-Based G-Computation. Multivariate Behav Res. 2012; 47(1):115-135.
PMC: 3293511.
DOI: 10.1080/00273171.2012.640600.
View
13.
Inoue K, Goldwater D, Allison M, Seeman T, Kestenbaum B, Watson K
. Serum Aldosterone Concentration, Blood Pressure, and Coronary Artery Calcium: The Multi-Ethnic Study of Atherosclerosis. Hypertension. 2020; 76(1):113-120.
PMC: 10681368.
DOI: 10.1161/HYPERTENSIONAHA.120.15006.
View
14.
Gordon D, Probstfield J, Garrison R, Neaton J, CASTELLI W, Knoke J
. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989; 79(1):8-15.
DOI: 10.1161/01.cir.79.1.8.
View
15.
Kunzel S, Sekhon J, Bickel P, Yu B
. Metalearners for estimating heterogeneous treatment effects using machine learning. Proc Natl Acad Sci U S A. 2019; 116(10):4156-4165.
PMC: 6410831.
DOI: 10.1073/pnas.1804597116.
View
16.
Sato T, Matsuyama Y
. Marginal structural models as a tool for standardization. Epidemiology. 2003; 14(6):680-6.
DOI: 10.1097/01.EDE.0000081989.82616.7d.
View
17.
Inoue K, Ritz B, Brent G, Ebrahimi R, Rhee C, Leung A
. Association of Subclinical Hypothyroidism and Cardiovascular Disease With Mortality. JAMA Netw Open. 2020; 3(2):e1920745.
DOI: 10.1001/jamanetworkopen.2019.20745.
View
18.
Yoshihara A, Yoshimura Noh J, Inoue K, Taguchi J, Hata K, Aizawa T
. Prediction model of Graves' disease in general clinical practice based on complete blood count and biochemistry profile. Endocr J. 2022; 69(9):1091-1100.
DOI: 10.1507/endocrj.EJ21-0741.
View
19.
Daniel R, Cousens S, De Stavola B, Kenward M, Sterne J
. Methods for dealing with time-dependent confounding. Stat Med. 2012; 32(9):1584-618.
DOI: 10.1002/sim.5686.
View
20.
Hu M, Asami C, Iwakura H, Nakajima Y, Sema R, Kikuchi T
. Development and preliminary validation of a machine learning system for thyroid dysfunction diagnosis based on routine laboratory tests. Commun Med (Lond). 2022; 2:9.
PMC: 9053267.
DOI: 10.1038/s43856-022-00071-1.
View