6.
Dahlqvist J, Salim R, Thomsen C, Vissing J
. A quantitative method to assess muscle edema using short TI inversion recovery MRI. Sci Rep. 2020; 10(1):7246.
PMC: 7190715.
DOI: 10.1038/s41598-020-64287-8.
View
7.
Monforte M, Laschena F, Ottaviani P, Bagnato M, Pichiecchio A, Tasca G
. Tracking muscle wasting and disease activity in facioscapulohumeral muscular dystrophy by qualitative longitudinal imaging. J Cachexia Sarcopenia Muscle. 2019; 10(6):1258-1265.
PMC: 6903444.
DOI: 10.1002/jcsm.12473.
View
8.
Handsfield G, Meyer C, Abel M, Blemker S
. Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy. Muscle Nerve. 2015; 53(6):933-45.
DOI: 10.1002/mus.24972.
View
9.
Lin Z, Henson W, Dowling L, Walsh J, DallAra E, Guo L
. Automatic segmentation of skeletal muscles from MR images using modified U-Net and a novel data augmentation approach. Front Bioeng Biotechnol. 2024; 12:1355735.
PMC: 10919285.
DOI: 10.3389/fbioe.2024.1355735.
View
10.
Mul K, Vincenten S, Voermans N, Lemmers R, van der Vliet P, van der Maarel S
. Adding quantitative muscle MRI to the FSHD clinical trial toolbox. Neurology. 2017; 89(20):2057-2065.
PMC: 5711504.
DOI: 10.1212/WNL.0000000000004647.
View
11.
Andersen G, Dahlqvist J, Vissing C, Heje K, Thomsen C, Vissing J
. MRI as outcome measure in facioscapulohumeral muscular dystrophy: 1-year follow-up of 45 patients. J Neurol. 2016; 264(3):438-447.
DOI: 10.1007/s00415-016-8361-3.
View
12.
Ferguson M, Poliachik S, Budech C, Gove N, Carter G, Wang L
. MRI change metrics of facioscapulohumeral muscular dystrophy: Stir and T1. Muscle Nerve. 2017; 57(6):905-912.
DOI: 10.1002/mus.26038.
View
13.
Kim S, Willcocks R, Daniels M, Morales J, Yoon D, Triplett W
. Multivariate modeling of magnetic resonance biomarkers and clinical outcome measures for Duchenne muscular dystrophy clinical trials. CPT Pharmacometrics Syst Pharmacol. 2023; 12(10):1437-1449.
PMC: 10583249.
DOI: 10.1002/psp4.13021.
View
14.
Norte G, Cousins M, Hogarth D, Knaus K, Slater L, Blemker S
. Personalized volumetric assessment of lower body muscles in patients with knee injuries: A descriptive case series. Knee. 2022; 39:38-49.
DOI: 10.1016/j.knee.2022.08.018.
View
15.
Handsfield G, Meyer C, Hart J, Abel M, Blemker S
. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech. 2013; 47(3):631-8.
DOI: 10.1016/j.jbiomech.2013.12.002.
View
16.
Barnard A, Willcocks R, Finanger E, Daniels M, Triplett W, Rooney W
. Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy. PLoS One. 2018; 13(3):e0194283.
PMC: 5858773.
DOI: 10.1371/journal.pone.0194283.
View
17.
Huysmans L, De Wel B, Claeys K, Maes F
. Automated MRI quantification of volumetric per-muscle fat fractions in the proximal leg of patients with muscular dystrophies. Front Neurol. 2023; 14:1200727.
PMC: 10244517.
DOI: 10.3389/fneur.2023.1200727.
View
18.
Mellion M, Widholm P, Karlsson M, Ahlgren A, Tawil R, Wagner K
. Quantitative Muscle Analysis in FSHD Using Whole-Body Fat-Referenced MRI: Composite Scores for Longitudinal and Cross-sectional Analysis. Neurology. 2022; 99(9):e877-e889.
DOI: 10.1212/WNL.0000000000200757.
View
19.
Pinter C, Lasso A, Fichtinger G
. Polymorph segmentation representation for medical image computing. Comput Methods Programs Biomed. 2019; 171:19-26.
DOI: 10.1016/j.cmpb.2019.02.011.
View
20.
Widholm P, Ahlgren A, Karlsson M, Romu T, Tawil R, Wagner K
. Quantitative muscle analysis in facioscapulohumeral muscular dystrophy using whole-body fat-referenced MRI: Protocol development, multicenter feasibility, and repeatability. Muscle Nerve. 2022; 66(2):183-192.
DOI: 10.1002/mus.27638.
View