6.
El-Daly M, Venu V, Saifeddine M, Mihara K, Kang S, Fedak P
. Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascul Pharmacol. 2018; 109:56-71.
DOI: 10.1016/j.vph.2018.06.006.
View
7.
Miyata K, Zhang S, Chan J
. The Rationale and Evidence for SGLT2 Inhibitors as a Treatment for Nondiabetic Glomerular Disease. Glomerular Dis. 2023; 1(1):21-33.
PMC: 9677741.
DOI: 10.1159/000513659.
View
8.
Hakroush S, Tampe D, Kluge I, Baier E, Korsten P, Tampe B
. Comparative analysis of SGLT-2 expression in renal vasculitis and lupus nephritis. Ann Rheum Dis. 2022; 81(7):1048-1050.
PMC: 9209668.
DOI: 10.1136/annrheumdis-2022-222167.
View
9.
Guo R, Wang P, Zheng X, Cui W, Shang J, Zhao Z
. SGLT2 inhibitors suppress epithelial-mesenchymal transition in podocytes under diabetic conditions downregulating the IGF1R/PI3K pathway. Front Pharmacol. 2022; 13:897167.
PMC: 9550168.
DOI: 10.3389/fphar.2022.897167.
View
10.
Huang F, Zhao Y, Wang Q, Hillebrands J, van den Born J, Ji L
. Dapagliflozin Attenuates Renal Tubulointerstitial Fibrosis Associated With Type 1 Diabetes by Regulating STAT1/TGFβ1 Signaling. Front Endocrinol (Lausanne). 2019; 10:441.
PMC: 6616082.
DOI: 10.3389/fendo.2019.00441.
View
11.
Li D, Yu K, Feng F, Zhang Y, Bai F, Zhang Y
. Hydroxychloroquine alleviates renal interstitial fibrosis by inhibiting the PI3K/Akt signaling pathway. Biochem Biophys Res Commun. 2022; 610:154-161.
DOI: 10.1016/j.bbrc.2022.04.058.
View
12.
Vanarsa K, Soomro S, Zhang T, Strachan B, Pedroza C, Nidhi M
. Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis. Ann Rheum Dis. 2020; 79(10):1349-1361.
PMC: 7839323.
DOI: 10.1136/annrheumdis-2019-216312.
View
13.
Chalkia A, Gakiopoulou H, Theochari I, Foukas P, Vassilopoulos D, Petras D
. TGF-β1/Smad Signalling in Proliferative Glomerulonephritis Associated with Autoimmune Diseases. Mediterr J Rheumatol. 2022; 33(2):176-184.
PMC: 9450207.
DOI: 10.31138/mjr.33.2.176.
View
14.
Khalili M, Bonnefoy A, Genest D, Quadri J, Rioux J, Troyanov S
. Clinical Use of Complement, Inflammation, and Fibrosis Biomarkers in Autoimmune Glomerulonephritis. Kidney Int Rep. 2020; 5(10):1690-1699.
PMC: 7569694.
DOI: 10.1016/j.ekir.2020.07.018.
View
15.
Lai Z, Borsuk R, Shadakshari A, Yu J, Dawood M, Garcia R
. Mechanistic target of rapamycin activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus erythematosus. J Immunol. 2013; 191(5):2236-46.
PMC: 3777662.
DOI: 10.4049/jimmunol.1301005.
View
16.
Wu C, Fu Q, Guo Q, Chen S, Goswami S, Sun S
. Lupus-associated atypical memory B cells are mTORC1-hyperactivated and functionally dysregulated. Ann Rheum Dis. 2019; 78(8):1090-1100.
PMC: 6691860.
DOI: 10.1136/annrheumdis-2019-215039.
View
17.
Zhao X, Li S, He Y, Yan L, Lv F, Liang Q
. SGLT2 inhibitors alleviated podocyte damage in lupus nephritis by decreasing inflammation and enhancing autophagy. Ann Rheum Dis. 2023; 82(10):1328-1340.
DOI: 10.1136/ard-2023-224242.
View
19.
Abdollahi E, Keyhanfar F, Delbandi A, Falak R, Hajimiresmaiel S, Shafiei M
. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur J Pharmacol. 2022; 918:174715.
DOI: 10.1016/j.ejphar.2021.174715.
View
20.
Lee N, Heo Y, Choi S, Jeon J, Han S, Kim D
. Anti-inflammatory Effects of Empagliflozin and Gemigliptin on LPS-Stimulated Macrophage via the IKK/NF-B, MKK7/JNK, and JAK2/STAT1 Signalling Pathways. J Immunol Res. 2021; 2021:9944880.
PMC: 8192181.
DOI: 10.1155/2021/9944880.
View
21.
Lu Y, Wu H, Zhu T, Li X, Zuo J, Hasan A
. Empagliflozin reduces kidney fibrosis and improves kidney function by alternative macrophage activation in rats with 5/6-nephrectomy. Biomed Pharmacother. 2022; 156:113947.
DOI: 10.1016/j.biopha.2022.113947.
View