» Articles » PMID: 38951650

Materials Descriptors for Advanced Water Dissociation Catalysts in Bipolar Membranes

Overview
Journal Nat Mater
Date 2024 Jul 1
PMID 38951650
Authors
Affiliations
Soon will be listed here.
Abstract

The voltage penalty driving water dissociation (WD) at high current density is a major obstacle in the commercialization of bipolar membrane (BPM) technology for energy devices. Here we show that three materials descriptors, that is, electrical conductivity, microscopic surface area and (nominal) surface-hydroxyl coverage, effectively control the kinetics of WD in BPMs. Using these descriptors and optimizing mass loading, we design new earth-abundant WD catalysts based on nanoparticle SnO synthesized at low temperature with high conductivity and hydroxyl coverage. These catalysts exhibit exceptional performance in a BPM electrolyser with low WD overvoltage (η) of 100 ± 20 mV at 1.0 A cm. The new catalyst works equivalently well with hydrocarbon proton-exchange layers as it does with fluorocarbon-based Nafion, thus providing pathways to commercializing advanced BPMs for a broad array of electrolysis, fuel-cell and electrodialysis applications.

Citing Articles

A critical appraisal of advances in integrated CO capture and electrochemical conversion.

Badreldin A, Li Y Chem Sci. 2025; 16(6):2483-2513.

PMID: 39867956 PMC: 11758242. DOI: 10.1039/d4sc06642a.


Tailoring high-performance bipolar membrane for durable pure water electrolysis.

Yu W, Zhang Z, Luo F, Li X, Duan F, Xu Y Nat Commun. 2024; 15(1):10220.

PMID: 39587075 PMC: 11589674. DOI: 10.1038/s41467-024-54514-5.


Rational Construction of Honeycomb-like Carbon Network-Encapsulated MoSe Nanocrystals as Bifunctional Catalysts for Highly Efficient Water Splitting.

Ou C, Huang Z, Yan X, Kong X, Chen X, Li S Molecules. 2024; 29(16).

PMID: 39202956 PMC: 11357002. DOI: 10.3390/molecules29163877.

References
1.
Chen L, Xu Q, Oener S, Fabrizio K, Boettcher S . Design principles for water dissociation catalysts in high-performance bipolar membranes. Nat Commun. 2022; 13(1):3846. PMC: 9253156. DOI: 10.1038/s41467-022-31429-7. View

2.
Oener S, Foster M, Boettcher S . Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science. 2020; 369(6507):1099-1103. DOI: 10.1126/science.aaz1487. View

3.
Xie K, Miao R, Ozden A, Liu S, Chen Z, Dinh C . Bipolar membrane electrolyzers enable high single-pass CO electroreduction to multicarbon products. Nat Commun. 2022; 13(1):3609. PMC: 9232613. DOI: 10.1038/s41467-022-31295-3. View

4.
Shehzad M, Yasmin A, Ge X, Ge Z, Zhang K, Liang X . Shielded goethite catalyst that enables fast water dissociation in bipolar membranes. Nat Commun. 2021; 12(1):9. PMC: 7782813. DOI: 10.1038/s41467-020-20131-1. View

5.
Powers D, Mondal A, Yang Z, Wycisk R, Kreidler E, Pintauro P . Freestanding Bipolar Membranes with an Electrospun Junction for High Current Density Water Splitting. ACS Appl Mater Interfaces. 2022; 14(31):36092-36104. DOI: 10.1021/acsami.2c07680. View