» Articles » PMID: 38949563

Stabilization of Non-Native Folds and Programmable Protein Gelation in Compositionally Designed Deep Eutectic Solvents

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2024 Jul 1
PMID 38949563
Authors
Affiliations
Soon will be listed here.
Abstract

Proteins are adjustable units from which biomaterials with designed properties can be developed. However, non-native folded states with controlled topologies are hardly accessible in aqueous environments, limiting their prospects as building blocks. Here, we demonstrate the ability of a series of anhydrous deep eutectic solvents (DESs) to precisely control the conformational landscape of proteins. We reveal that systematic variations in the chemical composition of binary and ternary DESs dictate the stabilization of a wide range of conformations, that is, compact globular folds, intermediate folding states, or unfolded chains, as well as controlling their collective behavior. Besides, different conformational states can be visited by simply adjusting the composition of ternary DESs, allowing for the refolding of unfolded states and vice versa. Notably, we show that these intermediates can trigger the formation of supramolecular gels, also known as eutectogels, where their mechanical properties correlate to the folding state of the protein. Given the inherent vulnerability of proteins outside the native fold in aqueous environments, our findings highlight DESs as tailorable solvents capable of stabilizing various non-native conformations on demand through solvent design.

References
1.
Ma C, Laaksonen A, Liu C, Lu X, Ji X . The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem Soc Rev. 2018; 47(23):8685-8720. DOI: 10.1039/c8cs00325d. View

2.
Han Q, El Mohamad M, Brown S, Zhai J, Rosado C, Shen Y . Small angle X-ray scattering investigation of ionic liquid effect on the aggregation behavior of globular proteins. J Colloid Interface Sci. 2023; 648:376-388. DOI: 10.1016/j.jcis.2023.05.130. View

3.
Dill K, Chan H . From Levinthal to pathways to funnels. Nat Struct Biol. 1997; 4(1):10-9. DOI: 10.1038/nsb0197-10. View

4.
Hoshino M, Hagihara Y, Hamada D, Kataoka M, Goto Y . Trifluoroethanol-induced conformational transition of hen egg-white lysozyme studied by small-angle X-ray scattering. FEBS Lett. 1997; 416(1):72-6. DOI: 10.1016/s0014-5793(97)01172-1. View

5.
Brogan A, Bui-Le L, Hallett J . Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase. Nat Chem. 2018; 10(8):859-865. DOI: 10.1038/s41557-018-0088-6. View