» Articles » PMID: 38943387

Classifying Alzheimer's Disease Neuropathology Using Clinical and MRI Measurements

Overview
Publisher Sage Publications
Specialties Geriatrics
Neurology
Date 2024 Jun 29
PMID 38943387
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Computer-aided machine learning models are being actively developed with clinically available biomarkers to diagnose Alzheimer's disease (AD) in living persons. Despite considerable work with cross-sectional in vivo data, many models lack validation against postmortem AD neuropathological data.

Objective: Train machine learning models to classify the presence or absence of autopsy-confirmed severe AD neuropathology using clinically available features.

Methods: AD neuropathological status are assessed at postmortem for participants from the National Alzheimer's Coordinating Center (NACC). Clinically available features are utilized, including demographics, Apolipoprotein E(APOE) genotype, and cortical thicknesses derived from ante-mortem MRI scans encompassing AD meta regions of interest (meta-ROI). Both logistic regression and random forest models are trained to identify linearly and nonlinearly separable features between participants with the presence (N = 91, age-at-MRI = 73.6±9.24, 38 women) or absence (N = 53, age-at-MRI = 68.93±19.69, 24 women) of severe AD neuropathology. The trained models are further validated in an external data set against in vivo amyloid biomarkers derived from PET imaging (amyloid-positive: N = 71, age-at-MRI = 74.17±6.37, 26 women; amyloid-negative: N = 73, age-at-MRI = 71.59±6.80, 41 women).

Results: Our models achieve a cross-validation accuracy of 84.03% in classifying the presence or absence of severe AD neuropathology, and an external-validation accuracy of 70.14% in classifying in vivo amyloid positivity status.

Conclusions: Our models show that clinically accessible features, including APOE genotype and cortical thinning encompassing AD meta-ROIs, are able to classify both postmortem confirmed AD neuropathological status and in vivo amyloid status with reasonable accuracies. These results suggest the potential utility of AD meta-ROIs in determining AD neuropathological status in living persons.

References
1.
Baiardi S, Quadalti C, Mammana A, Dellavalle S, Zenesini C, Sambati L . Diagnostic value of plasma p-tau181, NfL, and GFAP in a clinical setting cohort of prevalent neurodegenerative dementias. Alzheimers Res Ther. 2022; 14(1):153. PMC: 9555092. DOI: 10.1186/s13195-022-01093-6. View

2.
Landau S, Mintun M, Joshi A, Koeppe R, Petersen R, Aisen P . Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann Neurol. 2012; 72(4):578-86. PMC: 3786871. DOI: 10.1002/ana.23650. View

3.
Liu Z, Maiti T, Bender A . A Role for Prior Knowledge in Statistical Classification of the Transition from Mild Cognitive Impairment to Alzheimer's Disease. J Alzheimers Dis. 2021; 83(4):1859-1875. DOI: 10.3233/JAD-201398. View

4.
Anand K, Sabbagh M . Amyloid Imaging: Poised for Integration into Medical Practice. Neurotherapeutics. 2016; 14(1):54-61. PMC: 5233621. DOI: 10.1007/s13311-016-0474-y. View

5.
Nelson P, Head E, Schmitt F, Davis P, Neltner J, Jicha G . Alzheimer's disease is not "brain aging": neuropathological, genetic, and epidemiological human studies. Acta Neuropathol. 2011; 121(5):571-87. PMC: 3179861. DOI: 10.1007/s00401-011-0826-y. View