Platelet-derived Exosomes Alleviate Tendon Stem/progenitor Cell Senescence and Ferroptosis by Regulating AMPK/Nrf2/GPX4 Signaling and Improve Tendon-bone Junction Regeneration in Rats
Overview
Authors
Affiliations
Background: Tendon stem/progenitor cell (TSPC) senescence contributes to tendon degeneration and impaired tendon repair, resulting in age-related tendon disorders. Ferroptosis, a unique iron-dependent form of programmed cell death, might participate in the process of senescence. However, whether ferroptosis plays a role in TSPC senescence and tendon regeneration remains unclear. Recent studies reported that Platelet-derived exosomes (PL-Exos) might provide significant advantages in musculoskeletal regeneration and inflammation regulation. The effects and mechanism of PL-Exos on TSPC senescence and tendon regeneration are worthy of further study.
Methods: Herein, we examined the role of ferroptosis in the pathogenesis of TSPC senescence. PL-Exos were isolated and determined by TEM, particle size analysis, western blot and mass spectrometry identification. We investigated the function and underlying mechanisms of PL-Exos in TSPC senescence and ferroptosis via western blot, real-time quantitative polymerase chain reaction, and immunofluorescence analysis in vitro. Tendon regeneration was evaluated by HE staining, Safranin-O staining, and biomechanical tests in a rotator cuff tear model in rats.
Results: We discovered that ferroptosis was involved in senescent TSPCs. Furthermore, PL-Exos mitigated the aging phenotypes and ferroptosis of TSPCs induced by t-BHP and preserved their proliferation and tenogenic capacity. The in vivo animal results indicated that PL-Exos improved tendon-bone healing properties and mechanical strength. Mechanistically, PL-Exos activated AMPK phosphorylation and the downstream nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway, leading to the suppression of lipid peroxidation. AMPK inhibition or GPX4 inhibition blocked the protective effect of PL-Exos against t-BHP-induced ferroptosis and senescence.
Conclusion: In conclusion, ferroptosis might play a crucial role in TSPC aging. AMPK/Nrf2/GPX4 activation by PL-Exos was found to inhibit ferroptosis, consequently leading to the suppression of senescence in TSPCs. Our results provided new theoretical evidence for the potential application of PL-Exos to restrain tendon degeneration and promote tendon regeneration.
A nutrigeroscience approach: Dietary macronutrients and cellular senescence.
Calubag M, Robbins P, Lamming D Cell Metab. 2024; 36(9):1914-1944.
PMID: 39178854 PMC: 11386599. DOI: 10.1016/j.cmet.2024.07.025.