6.
Shahzad F, Alhabeb M, Hatter C, Anasori B, Hong S, Koo C
. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016; 353(6304):1137-40.
DOI: 10.1126/science.aag2421.
View
7.
Chen K, Tang X, Jia B, Chao C, Wei Y, Hou J
. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking. Nat Mater. 2022; 21(10):1121-1129.
DOI: 10.1038/s41563-022-01292-4.
View
8.
Yang R, Gui X, Yao L, Hu Q, Yang L, Zhang H
. Ultrathin, Lightweight, and Flexible CNT Buckypaper Enhanced Using MXenes for Electromagnetic Interference Shielding. Nanomicro Lett. 2021; 13(1):66.
PMC: 8187523.
DOI: 10.1007/s40820-021-00597-4.
View
9.
Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel E
. Laser-induced porous graphene films from commercial polymers. Nat Commun. 2014; 5:5714.
PMC: 4264682.
DOI: 10.1038/ncomms6714.
View
10.
Liu X, Pang K, Qin H, Liu Y, Liu Y, Gao C
. Hyperbolic Graphene Framework with Optimum Efficiency for Conductive Composites. ACS Nano. 2022; 16(9):14703-14712.
DOI: 10.1021/acsnano.2c05414.
View
11.
Zhao L, Liu Z, Chen D, Liu F, Yang Z, Li X
. Laser Synthesis and Microfabrication of Micro/Nanostructured Materials Toward Energy Conversion and Storage. Nanomicro Lett. 2021; 13(1):49.
PMC: 8187667.
DOI: 10.1007/s40820-020-00577-0.
View
12.
Chen Y, Potschke P, Pionteck J, Voit B, Qi H
. Multifunctional Cellulose/rGO/FeO Composite Aerogels for Electromagnetic Interference Shielding. ACS Appl Mater Interfaces. 2020; 12(19):22088-22098.
DOI: 10.1021/acsami.9b23052.
View
13.
Xie Y, Liu S, Huang K, Chen B, Shi P, Chen Z
. Ultra-Broadband Strong Electromagnetic Interference Shielding with Ferromagnetic Graphene Quartz Fabric. Adv Mater. 2022; 34(30):e2202982.
DOI: 10.1002/adma.202202982.
View
14.
Zhang W, Xu H, Xie F, Ma X, Niu B, Chen M
. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat Commun. 2022; 13(1):471.
PMC: 8789770.
DOI: 10.1038/s41467-022-28180-4.
View
15.
Liu J, Zhang H, Sun R, Liu Y, Liu Z, Zhou A
. Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding. Adv Mater. 2017; 29(38).
DOI: 10.1002/adma.201702367.
View
16.
Zhu Y, Liu J, Guo T, Wang J, Tang X, Nicolosi V
. Multifunctional TiCT MXene Composite Hydrogels with Strain Sensitivity toward Absorption-Dominated Electromagnetic-Interference Shielding. ACS Nano. 2021; 15(1):1465-1474.
DOI: 10.1021/acsnano.0c08830.
View
17.
Wan Y, Wang X, Li X, Liao S, Lin Z, Hu Y
. Ultrathin Densified Carbon Nanotube Film with "Metal-like" Conductivity, Superior Mechanical Strength, and Ultrahigh Electromagnetic Interference Shielding Effectiveness. ACS Nano. 2020; 14(10):14134-14145.
DOI: 10.1021/acsnano.0c06971.
View
18.
Song W, Gong C, Li H, Cheng X, Chen M, Yuan X
. Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding. ACS Appl Mater Interfaces. 2017; 9(41):36119-36129.
DOI: 10.1021/acsami.7b08229.
View
19.
Song W, Zhu J, Gan B, Zhao S, Wang H, Li C
. Flexible, Stretchable, and Transparent Planar Microsupercapacitors Based on 3D Porous Laser-Induced Graphene. Small. 2017; 14(1).
DOI: 10.1002/smll.201702249.
View
20.
Ye R, Peng Z, Wang T, Xu Y, Zhang J, Li Y
. In Situ Formation of Metal Oxide Nanocrystals Embedded in Laser-Induced Graphene. ACS Nano. 2015; 9(9):9244-51.
DOI: 10.1021/acsnano.5b04138.
View