6.
Zagotta M, Hicks K, Jacobs C, Young J, Hangarter R, Meeks-Wagner D
. The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 1996; 10(4):691-702.
DOI: 10.1046/j.1365-313x.1996.10040691.x.
View
7.
Fahlgren N, Feldman M, Gehan M, Wilson M, Shyu C, Bryant D
. A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria. Mol Plant. 2015; 8(10):1520-35.
DOI: 10.1016/j.molp.2015.06.005.
View
8.
Strayer C, Oyama T, Schultz T, Raman R, Somers D, Mas P
. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science. 2000; 289(5480):768-71.
DOI: 10.1126/science.289.5480.768.
View
9.
Park M, Kwon Y, Gil K, Park C
. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis. BMC Plant Biol. 2016; 16(1):114.
PMC: 4875590.
DOI: 10.1186/s12870-016-0810-8.
View
10.
Faure S, Turner A, Gruszka D, Christodoulou V, Davis S, von Korff M
. Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci U S A. 2012; 109(21):8328-33.
PMC: 3361427.
DOI: 10.1073/pnas.1120496109.
View
11.
Wang X, Jiang B, Gu L, Chen Y, Mora M, Zhu M
. A photoregulatory mechanism of the circadian clock in Arabidopsis. Nat Plants. 2021; 7(10):1397-1408.
DOI: 10.1038/s41477-021-01002-z.
View
12.
Hsu P, Devisetty U, Harmer S
. Accurate timekeeping is controlled by a cycling activator in Arabidopsis. Elife. 2013; 2:e00473.
PMC: 3639509.
DOI: 10.7554/eLife.00473.
View
13.
Austen E, Weis A
. What drives selection on flowering time? An experimental manipulation of the inherent correlation between genotype and environment. Evolution. 2015; 69(8):2018-33.
DOI: 10.1111/evo.12709.
View
14.
Niwa Y, Ito S, Nakamichi N, Mizoguchi T, Niinuma K, Yamashino T
. Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana. Plant Cell Physiol. 2007; 48(7):925-37.
DOI: 10.1093/pcp/pcm067.
View
15.
Park Y, Kim J, Lee J, Lee B, Paek N, Park C
. GIGANTEA Shapes the Photoperiodic Rhythms of Thermomorphogenic Growth in Arabidopsis. Mol Plant. 2020; 13(3):459-470.
DOI: 10.1016/j.molp.2020.01.003.
View
16.
Halliday K, Koornneef M, Whitelam G
. Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis thaliana L. to Low Red/Far-Red Ratio. Plant Physiol. 1994; 104(4):1311-1315.
PMC: 159295.
DOI: 10.1104/pp.104.4.1311.
View
17.
Friedman J, Twyford A, Willis J, Blackman B
. The extent and genetic basis of phenotypic divergence in life history traits in Mimulus guttatus. Mol Ecol. 2014; 24(1):111-22.
PMC: 4657477.
DOI: 10.1111/mec.13004.
View
18.
Flis A, Sulpice R, Seaton D, Ivakov A, Liput M, Abel C
. Photoperiod-dependent changes in the phase of core clock transcripts and global transcriptional outputs at dawn and dusk in Arabidopsis. Plant Cell Environ. 2016; 39(9):1955-81.
DOI: 10.1111/pce.12754.
View
19.
Picelli S, Faridani O, Bjorklund A, Winberg G, Sagasser S, Sandberg R
. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014; 9(1):171-81.
DOI: 10.1038/nprot.2014.006.
View
20.
Uhrig R, Schlapfer P, Roschitzki B, Hirsch-Hoffmann M, Gruissem W
. Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidopsis organs and seedlings. Plant J. 2019; 99(1):176-194.
DOI: 10.1111/tpj.14315.
View