» Articles » PMID: 38941326

Bridging Gaps in Automated Acute Myocardial Infarction Detection Between High-income and Low-income Countries

Overview
Specialty Public Health
Date 2024 Jun 28
PMID 38941326
Authors
Affiliations
Soon will be listed here.
References
1.
Alabdaljabar M, Hasan B, Noseworthy P, Maalouf J, Ammash N, Hashmi S . Machine Learning in Cardiology: A Potential Real-World Solution in Low- and Middle-Income Countries. J Multidiscip Healthc. 2023; 16:285-295. PMC: 9891080. DOI: 10.2147/JMDH.S383810. View

2.
Sacco R, Roth G, Reddy K, Arnett D, Bonita R, Gaziano T . The Heart of 25 by 25: Achieving the Goal of Reducing Global and Regional Premature Deaths From Cardiovascular Diseases and Stroke: A Modeling Study From the American Heart Association and World Heart Federation. Circulation. 2016; 133(23):e674-90. DOI: 10.1161/CIR.0000000000000395. View

3.
Siontis K, Noseworthy P, Attia Z, Friedman P . Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol. 2021; 18(7):465-478. PMC: 7848866. DOI: 10.1038/s41569-020-00503-2. View

4.
Hertz J, Madut D, Rubach M, William G, Crump J, Galson S . Incidence of Acute Myocardial Infarction in Northern Tanzania: A Modeling Approach Within a Prospective Observational Study. J Am Heart Assoc. 2021; 10(15):e021004. PMC: 8475708. DOI: 10.1161/JAHA.121.021004. View

5.
Cho Y, Kwon J, Kim K, Medina-Inojosa J, Jeon K, Cho S . Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography. Sci Rep. 2020; 10(1):20495. PMC: 7686480. DOI: 10.1038/s41598-020-77599-6. View