Bridging Gaps in Automated Acute Myocardial Infarction Detection Between High-income and Low-income Countries
Overview
Overview
Authors
Affiliations
Affiliations
Soon will be listed here.
References
1.
Alabdaljabar M, Hasan B, Noseworthy P, Maalouf J, Ammash N, Hashmi S
. Machine Learning in Cardiology: A Potential Real-World Solution in Low- and Middle-Income Countries. J Multidiscip Healthc. 2023; 16:285-295.
PMC: 9891080.
DOI: 10.2147/JMDH.S383810.
View
2.
Sacco R, Roth G, Reddy K, Arnett D, Bonita R, Gaziano T
. The Heart of 25 by 25: Achieving the Goal of Reducing Global and Regional Premature Deaths From Cardiovascular Diseases and Stroke: A Modeling Study From the American Heart Association and World Heart Federation. Circulation. 2016; 133(23):e674-90.
DOI: 10.1161/CIR.0000000000000395.
View
3.
Siontis K, Noseworthy P, Attia Z, Friedman P
. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol. 2021; 18(7):465-478.
PMC: 7848866.
DOI: 10.1038/s41569-020-00503-2.
View
4.
Hertz J, Madut D, Rubach M, William G, Crump J, Galson S
. Incidence of Acute Myocardial Infarction in Northern Tanzania: A Modeling Approach Within a Prospective Observational Study. J Am Heart Assoc. 2021; 10(15):e021004.
PMC: 8475708.
DOI: 10.1161/JAHA.121.021004.
View
5.
Cho Y, Kwon J, Kim K, Medina-Inojosa J, Jeon K, Cho S
. Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography. Sci Rep. 2020; 10(1):20495.
PMC: 7686480.
DOI: 10.1038/s41598-020-77599-6.
View