6.
Hawadak J, Foko L, Pande V, Singh V
. In vitro antiplasmodial activity, hemocompatibility and temporal stability of silver nanoparticles. Artif Cells Nanomed Biotechnol. 2022; 50(1):286-300.
DOI: 10.1080/21691401.2022.2126979.
View
7.
Sabzalizade S, Amani A, Vatandoost H, Hosseini F, Najafi-Taher R, Basseri H
. Evaluation of Nanoemulsion of Oil as Potent Botanical Larvicide against Malaria Vector, and West Nile Vector, Under Laboratory and Semi-Field Conditions. J Arthropod Borne Dis. 2023; 15(4):380-388.
PMC: 9810577.
DOI: 10.18502/jad.v15i4.10502.
View
8.
Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz A, Roni M
. Fern-synthesized silver nanocrystals: Towards a new class of mosquito oviposition deterrents?. Res Vet Sci. 2016; 109:40-51.
DOI: 10.1016/j.rvsc.2016.09.012.
View
9.
Murugan K, Subramaniam J, Rajaganesh R, Panneerselvam C, Amuthavalli P, Vasanthakumaran M
. Efficacy and side effects of bio-fabricated sardine fish scale silver nanoparticles against malarial vector Anopheles stephensi. Sci Rep. 2021; 11(1):19567.
PMC: 8486798.
DOI: 10.1038/s41598-021-98899-5.
View
10.
Acosta M, Gotopo L, Gamboa N, Rodrigues J, Henriques G, Cabrera G
. Antimalarial Activity of Highly Coordinative Fused Heterocycles Targeting βHematin Crystallization. ACS Omega. 2022; 7(9):7499-7514.
PMC: 8908514.
DOI: 10.1021/acsomega.1c05393.
View
11.
Ujihara K
. The history of extensive structural modifications of pyrethroids. J Pestic Sci. 2019; 44(4):215-224.
PMC: 6861428.
DOI: 10.1584/jpestics.D19-102.
View
12.
Govindarajan M, Benelli G
. Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitol Res. 2015; 115(3):925-35.
DOI: 10.1007/s00436-015-4817-0.
View
13.
Yazdanian M, Rostamzadeh P, Rahbar M, Alam M, Abbasi K, Tahmasebi E
. The Potential Application of Green-Synthesized Metal Nanoparticles in Dentistry: A Comprehensive Review. Bioinorg Chem Appl. 2022; 2022:2311910.
PMC: 8913069.
DOI: 10.1155/2022/2311910.
View
14.
Kansal I, Kapoor A, Solanki S, Singh R
. Cypermethrin toxicity in the environment: analytical insight into detection methods and microbial degradation pathways. J Appl Microbiol. 2023; 134(6).
DOI: 10.1093/jambio/lxad105.
View
15.
Jayaseelan C, Rahuman A, Rajakumar G, Kirthi A, Santhoshkumar T, Marimuthu S
. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res. 2011; 109(1):185-94.
DOI: 10.1007/s00436-010-2242-y.
View
16.
Minal S, Prakash S
. Laboratory analysis of Au-Pd bimetallic nanoparticles synthesized with Citrus limon leaf extract and its efficacy on mosquito larvae and non-target organisms. Sci Rep. 2020; 10(1):21610.
PMC: 7728787.
DOI: 10.1038/s41598-020-78662-y.
View
17.
Piao M, Kang K, Lee I, Kim H, Kim S, Choi J
. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2010; 201(1):92-100.
DOI: 10.1016/j.toxlet.2010.12.010.
View
18.
Haldar K, Bhattacharjee S, Safeukui I
. Drug resistance in Plasmodium. Nat Rev Microbiol. 2018; 16(3):156-170.
PMC: 6371404.
DOI: 10.1038/nrmicro.2017.161.
View
19.
Almeida J, Chen A, Foster A, Drezek R
. In vivo biodistribution of nanoparticles. Nanomedicine (Lond). 2011; 6(5):815-35.
DOI: 10.2217/nnm.11.79.
View
20.
Miu B, Dinischiotu A
. New Green Approaches in Nanoparticles Synthesis: An Overview. Molecules. 2022; 27(19).
PMC: 9573382.
DOI: 10.3390/molecules27196472.
View