» Articles » PMID: 38931364

Simvastatin-Encapsulated Topical Liposomal Gel for Augmented Wound Healing: Optimization Using the Box-Behnken Model, Evaluations, and In Vivo Studies

Overview
Publisher MDPI
Specialty Chemistry
Date 2024 Jun 27
PMID 38931364
Authors
Affiliations
Soon will be listed here.
Abstract

Statins function beyond regulating cholesterol and, when administered systemically, can promote wound healing. However, studies have yet to explore the topical use of statins for wound healing. The present study demonstrated the topical administration of SIM and aimed to formulate, evaluate, and optimize Simvastatin (SIM)-encapsulated liposome gel carrier systems to facilitate successful topical wound healing. Liposomes containing SIM were formulated and optimized via a response surface methodology (RSM) using the thin-film hydration method. The effects of formulation variables, including the 1,2-dioleoyloxy-3-trimethylammoniumpropan (DOTAP) concentration, Span 80 concentration, and cholesterol concentration, on zeta potential (mV), entrapment efficacy (%), and particle size (nm) were studied. The optimized liposome formulation (F-07) exhibited a zeta potential value of 16.56 ± 2.51 mV, revealing robust stability and a high SIM encapsulation efficiency of 95.6 ± 4.2%, whereas its particle size of 190.3 ± 3.3 nm confirmed its stability and structural integrity. The optimized liposome gel demonstrated pseudoplastic flow behavior. This property is advantageous in topical drug delivery systems because of its ease of application, improved spreadability, and enhanced penetration, demonstrating prolonged SIM release. The assessment of the wound healing efficacy of the optimized liposomal gel formulation demonstrated a substantial decrease in wound size in mice on the sixteenth day post-wounding. These findings suggest that the use of liposomal gels is a potential drug delivery strategy for incorporating SIM, thereby augmenting its effectiveness in promoting wound healing.

References
1.
Hasanein Asfour M, Elmotasem H, Mostafa D, Salama A . Chitosan based Pickering emulsion as a promising approach for topical application of rutin in a solubilized form intended for wound healing: In vitro and in vivo study. Int J Pharm. 2017; 534(1-2):325-338. DOI: 10.1016/j.ijpharm.2017.10.044. View

2.
Wieber A, Selzer T, Kreuter J . Physico-chemical characterisation of cationic DOTAP liposomes as drug delivery system for a hydrophilic decapeptide before and after freeze-drying. Eur J Pharm Biopharm. 2011; 80(2):358-67. DOI: 10.1016/j.ejpb.2011.11.008. View

3.
Bragagni M, Mennini N, Ghelardini C, Mura P . Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting. J Pharm Pharm Sci. 2012; 15(1):184-96. DOI: 10.18433/j3230m. View

4.
Shi J, Ma F, Wang X, Wang F, Liao H . Formulation of liposomes gels of paeonol for transdermal drug delivery by Box-Behnken statistical design. J Liposome Res. 2012; 22(4):270-8. DOI: 10.3109/08982104.2012.690159. View

5.
Aly U, Abou-Taleb H, Abdellatif A, Tolba N . Formulation and evaluation of simvastatin polymeric nanoparticles loaded in hydrogel for optimum wound healing purpose. Drug Des Devel Ther. 2019; 13:1567-1580. PMC: 6512793. DOI: 10.2147/DDDT.S198413. View