6.
Zalewski P, Truong-Tran A, Lincoln S, Ward D, Shankar A, Coyle P
. Use of a zinc fluorophore to measure labile pools of zinc in body fluids and cell-conditioned media. Biotechniques. 2006; 40(4):509-20.
DOI: 10.2144/06404RR02.
View
7.
Nowakowski A, Meeusen J, Menden H, Tomasiewicz H, Petering D
. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes. Inorg Chem. 2015; 54(24):11637-47.
DOI: 10.1021/acs.inorgchem.5b01535.
View
8.
Fairweather-Tait S, Lynch S, Hotz C, Hurrell R, Abrahamse L, Beebe S
. The usefulness of in vitro models to predict the bioavailability of iron and zinc: a consensus statement from the HarvestPlus expert consultation. Int J Vitam Nutr Res. 2006; 75(6):371-4.
DOI: 10.1024/0300-9831.75.6.371.
View
9.
Pullakhandam R, Nair K, Pamini H, Punjal R
. Bioavailability of iron and zinc from multiple micronutrient fortified beverage premixes in Caco-2 cell model. J Food Sci. 2011; 76(2):H38-42.
DOI: 10.1111/j.1750-3841.2010.01993.x.
View
10.
Madhari R, Boddula S, Ravindranadh P, Jyrwa Y, Boiroju N, Pullakhandam R
. High dietary micronutrient inadequacy in peri-urban school children from a district in South India: Potential for staple food fortification and nutrient supplementation. Matern Child Nutr. 2020; 16 Suppl 3:e13065.
PMC: 7752122.
DOI: 10.1111/mcn.13065.
View
11.
Versieck J
. Trace elements in human body fluids and tissues. Crit Rev Clin Lab Sci. 1985; 22(2):97-184.
DOI: 10.3109/10408368509165788.
View
12.
Iyengar V, Woittiez J
. Trace elements in human clinical specimens: evaluation of literature data to identify reference values. Clin Chem. 1988; 34(3):474-81.
View
13.
Rahil-Khazen R, Bolann B, Ulvik R
. Trace element reference values in serum determined by inductively coupled plasma atomic emission spectrometry. Clin Chem Lab Med. 2000; 38(8):765-72.
DOI: 10.1515/CCLM.2000.109.
View
14.
Jyrwa Y, Yaduvanshi P, Sinha G, Dwarapudi S, Madhari R, Boiroju N
. Bioavailability of iron from novel hydrogen reduced iron powders: Studies in Caco-2 cells and rat model. J Food Sci. 2021; 86(8):3480-3491.
DOI: 10.1111/1750-3841.15828.
View
15.
Sreenivasulu K, Raghu P, Ravinder P, Nair K
. Effect of dietary ligands and food matrices on zinc uptake in Caco-2 cells: implications in assessing zinc bioavailability. J Agric Food Chem. 2008; 56(22):10967-72.
DOI: 10.1021/jf802060q.
View
16.
Dasi T, Palika R, Pullakhandam R, Augustine L, Boiroju N, Prasannanavar D
. Point-of-care Hb measurement in pooled capillary blood by a portable autoanalyser: comparison with venous blood Hb measured by reference methods in cross-sectional and longitudinal studies. Br J Nutr. 2021; 128(6):1108-1117.
DOI: 10.1017/S0007114521004347.
View
17.
Snitsarev V, Budde T, Stricker T, Cox J, Krupa D, Geng L
. Fluorescent detection of Zn(2+)-rich vesicles with Zinquin: mechanism of action in lipid environments. Biophys J. 2001; 80(3):1538-46.
PMC: 1301345.
DOI: 10.1016/S0006-3495(01)76126-7.
View
18.
Pullakhandam R, Ghosh S, Kulkarni B, Reddy G, Rajkumar H, Kapil U
. Reference cut-offs to define low serum zinc concentrations in healthy 1-19 year old Indian children and adolescents. Eur J Clin Nutr. 2022; 76(8):1150-1157.
DOI: 10.1038/s41430-022-01088-4.
View
19.
Rao D, Neeraja C, Babu P, Nirmala B, Suman K, Rao L
. Zinc Biofortified Rice Varieties: Challenges, Possibilities, and Progress in India. Front Nutr. 2020; 7:26.
PMC: 7154074.
DOI: 10.3389/fnut.2020.00026.
View
20.
Hunt J, Johnson L, Juliano B
. Bioavailability of zinc from cooked philippine milled, undermilled, and brown rice, as assessed in rats by using growth, bone zinc, and zinc-65 retention. J Agric Food Chem. 2002; 50(18):5229-35.
DOI: 10.1021/jf020222b.
View