6.
Williams E, OToole D, Miller M, Kreeger T, Jewell J
. CATTLE ( BOS TAURUS) RESIST CHRONIC WASTING DISEASE FOLLOWING ORAL INOCULATION CHALLENGE OR TEN YEARS' NATURAL EXPOSURE IN CONTAMINATED ENVIRONMENTS. J Wildl Dis. 2018; 54(3):460-470.
DOI: 10.7589/2017-12-299.
View
7.
McNulty E, Nalls A, Mellentine S, Hughes E, Pulscher L, Hoover E
. Comparison of conventional, amplification and bio-assay detection methods for a chronic wasting disease inoculum pool. PLoS One. 2019; 14(5):e0216621.
PMC: 6508678.
DOI: 10.1371/journal.pone.0216621.
View
8.
Pritzkow S, Morales R, Moda F, Khan U, Telling G, Hoover E
. Grass plants bind, retain, uptake, and transport infectious prions. Cell Rep. 2015; 11(8):1168-75.
PMC: 4449294.
DOI: 10.1016/j.celrep.2015.04.036.
View
9.
Xiong L, Raymond L, Hayes S, Raymond G, Caughey B
. Conformational change, aggregation and fibril formation induced by detergent treatments of cellular prion protein. J Neurochem. 2001; 79(3):669-78.
DOI: 10.1046/j.1471-4159.2001.00606.x.
View
10.
Davenport K, Christiansen J, Bian J, Young M, Gallegos J, Kim S
. Comparative analysis of prions in nervous and lymphoid tissues of chronic wasting disease-infected cervids. J Gen Virol. 2018; 99(5):753-758.
PMC: 6537624.
DOI: 10.1099/jgv.0.001053.
View
11.
Johnson C, Phillips K, Schramm P, McKenzie D, Aiken J, Pedersen J
. Prions adhere to soil minerals and remain infectious. PLoS Pathog. 2006; 2(4):e32.
PMC: 1435987.
DOI: 10.1371/journal.ppat.0020032.
View
12.
Bian J, Christiansen J, Moreno J, Kane S, Khaychuk V, Gallegos J
. Primary structural differences at residue 226 of deer and elk PrP dictate selection of distinct CWD prion strains in gene-targeted mice. Proc Natl Acad Sci U S A. 2019; 116(25):12478-12487.
PMC: 6589652.
DOI: 10.1073/pnas.1903947116.
View
13.
Burgener K, Lichtenberg S, Lomax A, Storm D, Walsh D, Pedersen J
. Diagnostic testing of chronic wasting disease in white-tailed deer (Odocoileus virginianus) by RT-QuIC using multiple tissues. PLoS One. 2022; 17(11):e0274531.
PMC: 9668146.
DOI: 10.1371/journal.pone.0274531.
View
14.
Carlson C, Thomas S, Keating M, Soto P, Gibbs N, Chang H
. Plants as vectors for environmental prion transmission. iScience. 2023; 26(12):108428.
PMC: 10700824.
DOI: 10.1016/j.isci.2023.108428.
View
15.
Biancalana M, Koide S
. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta. 2010; 1804(7):1405-12.
PMC: 2880406.
DOI: 10.1016/j.bbapap.2010.04.001.
View
16.
Sneideris T, Baranauskiene L, Cannon J, Rutkiene R, Meskys R, Smirnovas V
. Looking for a generic inhibitor of amyloid-like fibril formation among flavone derivatives. PeerJ. 2015; 3:e1271.
PMC: 4586895.
DOI: 10.7717/peerj.1271.
View
17.
Hyeon J, Kim S, Lee S, Lee J, An S, Lee M
. Anti-Prion Screening for Acridine, Dextran, and Tannic Acid using Real Time-Quaking Induced Conversion: A Comparison with PrPSc-Infected Cell Screening. PLoS One. 2017; 12(1):e0170266.
PMC: 5240994.
DOI: 10.1371/journal.pone.0170266.
View
18.
Davenport K, Hoover C, Denkers N, Mathiason C, Hoover E
. Modified Protein Misfolding Cyclic Amplification Overcomes Real-Time Quaking-Induced Conversion Assay Inhibitors in Deer Saliva To Detect Chronic Wasting Disease Prions. J Clin Microbiol. 2018; 56(9).
PMC: 6113454.
DOI: 10.1128/JCM.00947-18.
View
19.
Henderson D, Manca M, Haley N, Denkers N, Nalls A, Mathiason C
. Rapid antemortem detection of CWD prions in deer saliva. PLoS One. 2013; 8(9):e74377.
PMC: 3770611.
DOI: 10.1371/journal.pone.0074377.
View
20.
Hudson S, Ecroyd H, Kee T, Carver J
. The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J. 2009; 276(20):5960-72.
DOI: 10.1111/j.1742-4658.2009.07307.x.
View