6.
Davidenko J, Kent P, Chialvo D, Michaels D, Jalife J
. Sustained vortex-like waves in normal isolated ventricular muscle. Proc Natl Acad Sci U S A. 1990; 87(22):8785-9.
PMC: 55044.
DOI: 10.1073/pnas.87.22.8785.
View
7.
Pan D, Gao X, Feng X, Pan J, Zhang H
. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media. Sci Rep. 2016; 6:21876.
PMC: 4764807.
DOI: 10.1038/srep21876.
View
8.
Vandersickel N, Bossu A, De Neve J, Dunnink A, Meijborg V, van der Heyden M
. Short-Lasting Episodes of Torsade de Pointes in the Chronic Atrioventricular Block Dog Model Have a Focal Mechanism, While Longer-Lasting Episodes Are Maintained by Re-Entry. JACC Clin Electrophysiol. 2018; 3(13):1565-1576.
DOI: 10.1016/j.jacep.2017.06.016.
View
9.
Zhang H, Cao Z, Wu N, Ying H, Hu G
. Suppress Winfree turbulence by local forcing excitable systems. Phys Rev Lett. 2005; 94(18):188301.
DOI: 10.1103/PhysRevLett.94.188301.
View
10.
Gray R
. Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli. Chaos. 2003; 12(3):941-951.
DOI: 10.1063/1.1497836.
View
11.
Luo C, Rudy Y
. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res. 1991; 68(6):1501-26.
DOI: 10.1161/01.res.68.6.1501.
View
12.
Navarrete E, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T
. Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation. 2013; 128(11 Suppl 1):S3-13.
PMC: 3855862.
DOI: 10.1161/CIRCULATIONAHA.112.000570.
View
13.
Madhvani R, Angelini M, Xie Y, Pantazis A, Suriany S, Borgstrom N
. Targeting the late component of the cardiac L-type Ca2+ current to suppress early afterdepolarizations. J Gen Physiol. 2015; 145(5):395-404.
PMC: 4411259.
DOI: 10.1085/jgp.201411288.
View
14.
Yang K, Nerbonne J
. Mechanisms contributing to myocardial potassium channel diversity, regulation and remodeling. Trends Cardiovasc Med. 2015; 26(3):209-18.
PMC: 4715991.
DOI: 10.1016/j.tcm.2015.07.002.
View
15.
Yamazaki M, Honjo H, Ashihara T, Harada M, Sakuma I, Nakazawa K
. Regional cooling facilitates termination of spiral-wave reentry through unpinning of rotors in rabbit hearts. Heart Rhythm. 2011; 9(1):107-14.
PMC: 3328397.
DOI: 10.1016/j.hrthm.2011.08.013.
View
16.
Bohnen M, Stevenson W, Tedrow U, Michaud G, John R, Epstein L
. Incidence and predictors of major complications from contemporary catheter ablation to treat cardiac arrhythmias. Heart Rhythm. 2011; 8(11):1661-6.
DOI: 10.1016/j.hrthm.2011.05.017.
View
17.
Boccia E, Luther S, Parlitz U
. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue. Philos Trans A Math Phys Eng Sci. 2017; 375(2096).
PMC: 5434080.
DOI: 10.1098/rsta.2016.0289.
View
18.
Fenton F, Cherry E, Hastings H, Evans S
. Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos. 2003; 12(3):852-892.
DOI: 10.1063/1.1504242.
View
19.
Majumder R, Feola I, Teplenin A, de Vries A, Panfilov A, Pijnappels D
. Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system. Elife. 2018; 7.
PMC: 6195347.
DOI: 10.7554/eLife.41076.
View
20.
Horning M, Takagi S, Yoshikawa K
. Controlling activation site density by low-energy far-field stimulation in cardiac tissue. Phys Rev E Stat Nonlin Soft Matter Phys. 2012; 85(6 Pt 1):061906.
DOI: 10.1103/PhysRevE.85.061906.
View