Loss-of-function W4645R Mutation in the RyR2-caffeine Binding Site: Implications for Synchrony and Arrhythmogenesis
Overview
Endocrinology
Affiliations
Aims: Previous studies have identified RyR2 W4645R mutation, located in the caffeine-binding site, to associate with CPVT1 pathology. Caffeine binding to its site is thought to displace the carboxyl-terminal domain to Ca-binding, allowing the tryptophan residue (W4645) to regulate Ca sensitivity of RyR2. To gain insights into regulation of RyR2 Ca-binding and its interaction with caffeine-binding site, we introduced W4645R-RyR2 point mutation via CRISPR/Cas9 gene-editing in human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs) and characterized their Ca-signaling phenotype compared to WT hiPSCCMs.
Methods And Results: W4645R-RyR2 cardiomyocytes had: (1) no significant change in I magnitude or voltage-dependence; (2) slightly reduced CICR; (3) altered relaxation kinetics of Ca-transients with no change in isoproterenol sensitivity; (4) complete loss of caffeine-triggered Ca release; (5) larger SR Ca leak resulting in 40 % lower SR Ca content, as determined by myocytes' response to 4-CmC; (6) lower incidence of calcium sparks and asynchronous spontaneous SR Ca releases.
Conclusions: W4645R-RyR2 mutation induces loss of caffeine-triggered SR Ca release and enhances SR Ca leak that underlie asynchronous spontaneous Ca releases, triggering arrhythmia and impairing cardiac function.