» Articles » PMID: 38902368

Deep Ensemble Learning and Quantum Machine Learning Approach for Alzheimer's Disease Detection

Overview
Journal Sci Rep
Specialty Science
Date 2024 Jun 20
PMID 38902368
Authors
Affiliations
Soon will be listed here.
Abstract

Alzheimer disease (AD) is among the most chronic neurodegenerative diseases that threaten global public health. The prevalence of Alzheimer disease and consequently the increased risk of spread all over the world pose a vital threat to human safekeeping. Early diagnosis of AD is a suitable action for timely intervention and medication, which may increase the prognosis and quality of life for affected individuals. Quantum computing provides a more efficient model for different disease classification tasks than classical machine learning approaches. The full potential of quantum computing is not applied to Alzheimer's disease classification tasks as expected. In this study, we proposed an ensemble deep learning model based on quantum machine learning classifiers to classify Alzheimer's disease. The Alzheimer's disease Neuroimaging Initiative I and Alzheimer's disease Neuroimaging Initiative II datasets are merged for the AD disease classification. We combined important features extracted based on the customized version of VGG16 and ResNet50 models from the merged images then feed these features to the Quantum Machine Learning classifier to classify them as non-demented, mild demented, moderate demented, and very mild demented. We evaluate the performance of our model by using six metrics; accuracy, the area under the curve, F1-score, precision, and recall. The result validates that the proposed model outperforms several state-of-the-art methods for detecting Alzheimer's disease by registering an accuracy of 99.89 and 98.37 F1-score.

Citing Articles

Cognitive performance classification of older patients using machine learning and electronic medical records.

Richter-Laskowska M, Sobotnicka E, Bednorz A Sci Rep. 2025; 15(1):6564.

PMID: 39994339 PMC: 11850844. DOI: 10.1038/s41598-025-90460-y.

References
1.
Steiner A, Jacinto A, Mayoral V, Brucki S, Citero V . Mild cognitive impairment and progression to dementia of Alzheimer's disease. Rev Assoc Med Bras (1992). 2017; 63(7):651-655. DOI: 10.1590/1806-9282.63.07.651. View

2.
Chen L, Qiao H, Zhu F . Alzheimer's Disease Diagnosis With Brain Structural MRI Using Multiview-Slice Attention and 3D Convolution Neural Network. Front Aging Neurosci. 2022; 14:871706. PMC: 9088013. DOI: 10.3389/fnagi.2022.871706. View

3.
Kang J, Ullah Z, Gwak J . MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers. Sensors (Basel). 2021; 21(6). PMC: 8004778. DOI: 10.3390/s21062222. View

4.
Rebentrost P, Mohseni M, Lloyd S . Quantum support vector machine for big data classification. Phys Rev Lett. 2014; 113(13):130503. DOI: 10.1103/PhysRevLett.113.130503. View

5.
An N, Ding H, Yang J, Au R, Ang T . Deep ensemble learning for Alzheimer's disease classification. J Biomed Inform. 2020; 105:103411. PMC: 9760486. DOI: 10.1016/j.jbi.2020.103411. View