» Articles » PMID: 38897991

High-entropy Relaxor Ferroelectric Ceramics for Ultrahigh Energy Storage

Overview
Journal Nat Commun
Specialty Biology
Date 2024 Jun 19
PMID 38897991
Authors
Affiliations
Soon will be listed here.
Abstract

Dielectric ceramic capacitors with ultrahigh power densities are fundamental to modern electrical devices. Nonetheless, the poor energy density confined to the low breakdown strength is a long-standing bottleneck in developing desirable dielectric materials for practical applications. In this instance, we present a high-entropy tungsten bronze-type relaxor ferroelectric achieved through an equimolar-ratio element design, which realizes a giant recoverable energy density of 11.0 J·cm and a high efficiency of 81.9%. Moreover, the atomic-scale microstructural study confirms that the excellent comprehensive energy storage performance is attributed to the increased atomic-scale compositional heterogeneity from high configuration entropy, which modulates the relaxor features as well as induces lattice distortion, resulting in reduced polarization hysteresis and enhanced breakdown endurance. This study provides evidence that developing high-entropy relaxor ferroelectric material via equimolar-ratio element design is an effective strategy for achieving ultrahigh energy storage characteristics. Our results also uncover the immense potential of tetragonal tungsten bronze-type materials for advanced energy storage applications.

Citing Articles

Ultrahigh capacitive energy storage of BiFeO-based ceramics through multi-oriented nanodomain construction.

Zhou Z, Bai W, Liu N, Zhang W, Chen S, Wang P Nat Commun. 2025; 16(1):2075.

PMID: 40021622 PMC: 11871070. DOI: 10.1038/s41467-025-57228-4.


Machine learning assisted composition design of high-entropy Pb-free relaxors with giant energy-storage.

Wang X, Zhang J, Ma X, Luo H, Liu L, Liu H Nat Commun. 2025; 16(1):1254.

PMID: 39893180 PMC: 11787375. DOI: 10.1038/s41467-025-56443-3.


A high-entropy alloy showing gigapascal superelastic stress and nearly temperature-independent modulus.

Gou J, Liu G, Yang T, Liu X, Pan Y, Liu C Nat Commun. 2025; 16(1):1227.

PMID: 39890792 PMC: 11785802. DOI: 10.1038/s41467-025-56580-9.


High-entropy engineered BaTiO-based ceramic capacitors with greatly enhanced high-temperature energy storage performance.

Kong X, Yang L, Meng F, Zhang T, Zhang H, Lin Y Nat Commun. 2025; 16(1):885.

PMID: 39837829 PMC: 11750986. DOI: 10.1038/s41467-025-56195-0.


High-entropy assisted capacitive energy storage in relaxor ferroelectrics by chemical short-range order.

Wei T, Zou J, Zhou X, Song M, Zhang Y, Nan C Nat Commun. 2025; 16(1):807.

PMID: 39827268 PMC: 11742713. DOI: 10.1038/s41467-025-56181-6.


References
1.
Li J, Li F, Xu Z, Zhang S . Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency. Adv Mater. 2018; 30(32):e1802155. DOI: 10.1002/adma.201802155. View

2.
Chen L, Yu H, Wu J, Deng S, Liu H, Zhu L . Large Energy Capacitive High-Entropy Lead-Free Ferroelectrics. Nanomicro Lett. 2023; 15(1):65. PMC: 10006382. DOI: 10.1007/s40820-023-01036-2. View

3.
Peng H, Liu Z, Fu Z, Dai K, Lv Z, Guo S . Superior Energy Density Achieved in Unfilled Tungsten Bronze Ferroelectrics via Multiscale Regulation Strategy. Adv Sci (Weinh). 2023; 10(17):e2300227. PMC: 10265065. DOI: 10.1002/advs.202300227. View

4.
Zhang Q, Jin C, Xu H, Zhang L, Ren X, Ouyang Y . Multiple-ellipse fitting method to precisely measure the positions of atomic columns in a transmission electron microscope image. Micron. 2018; 113:99-104. DOI: 10.1016/j.micron.2018.06.016. View

5.
Wang G, Lu Z, Li Y, Li L, Ji H, Feteira A . Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives. Chem Rev. 2021; 121(10):6124-6172. PMC: 8277101. DOI: 10.1021/acs.chemrev.0c01264. View