6.
De Virgiliis F, Mueller F, Palmisano I, Chadwick J, Luengo-Gutierrez L, Giarrizzo A
. The circadian clock time tunes axonal regeneration. Cell Metab. 2023; 35(12):2153-2164.e4.
DOI: 10.1016/j.cmet.2023.10.012.
View
7.
Loh Y, Koemeter-Cox A, Finelli M, Shen L, Friedel R, Zou H
. Comprehensive mapping of 5-hydroxymethylcytosine epigenetic dynamics in axon regeneration. Epigenetics. 2016; 12(2):77-92.
PMC: 5330438.
DOI: 10.1080/15592294.2016.1264560.
View
8.
Avraham O, Le J, Leahy K, Li T, Zhao G, Cavalli V
. Analysis of neuronal injury transcriptional response identifies CTCF and YY1 as co-operating factors regulating axon regeneration. Front Mol Neurosci. 2022; 15:967472.
PMC: 9446241.
DOI: 10.3389/fnmol.2022.967472.
View
9.
Nora E, Goloborodko A, Valton A, Gibcus J, Uebersohn A, Abdennur N
. Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization. Cell. 2017; 169(5):930-944.e22.
PMC: 5538188.
DOI: 10.1016/j.cell.2017.05.004.
View
10.
Luo X, Liu Y, Dang D, Hu T, Hou Y, Meng X
. 3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell. 2021; 184(3):723-740.e21.
DOI: 10.1016/j.cell.2021.01.001.
View
11.
Tedeschi A, Dupraz S, Laskowski C, Xue J, Ulas T, Beyer M
. The Calcium Channel Subunit Alpha2delta2 Suppresses Axon Regeneration in the Adult CNS. Neuron. 2016; 92(2):419-434.
DOI: 10.1016/j.neuron.2016.09.026.
View
12.
Lindner R, Puttagunta R, Nguyen T, Di Giovanni S
. DNA methylation temporal profiling following peripheral versus central nervous system axotomy. Sci Data. 2015; 1:140038.
PMC: 4411011.
DOI: 10.1038/sdata.2014.38.
View
13.
Ma T, Willis D
. What makes a RAG regeneration associated?. Front Mol Neurosci. 2015; 8:43.
PMC: 4528284.
DOI: 10.3389/fnmol.2015.00043.
View
14.
Sams D, Nardone S, Getselter D, Raz D, Tal M, Rayi P
. Neuronal CTCF Is Necessary for Basal and Experience-Dependent Gene Regulation, Memory Formation, and Genomic Structure of BDNF and Arc. Cell Rep. 2016; 17(9):2418-2430.
DOI: 10.1016/j.celrep.2016.11.004.
View
15.
Hansen A, Cattoglio C, Darzacq X, Tjian R
. Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus. 2017; 9(1):20-32.
PMC: 5990973.
DOI: 10.1080/19491034.2017.1389365.
View
16.
Finelli M, Wong J, Zou H
. Epigenetic regulation of sensory axon regeneration after spinal cord injury. J Neurosci. 2013; 33(50):19664-76.
PMC: 3858634.
DOI: 10.1523/JNEUROSCI.0589-13.2013.
View
17.
Fujita Y, Masuda K, Bando M, Nakato R, Katou Y, Tanaka T
. Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior. J Exp Med. 2017; 214(5):1431-1452.
PMC: 5413336.
DOI: 10.1084/jem.20161517.
View
18.
Rao S, Huntley M, Durand N, Stamenova E, Bochkov I, Robinson J
. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159(7):1665-80.
PMC: 5635824.
DOI: 10.1016/j.cell.2014.11.021.
View
19.
Cuadrado A, Remeseiro S, Grana O, Pisano D, Losada A
. The contribution of cohesin-SA1 to gene expression and chromatin architecture in two murine tissues. Nucleic Acids Res. 2015; 43(6):3056-67.
PMC: 4381060.
DOI: 10.1093/nar/gkv144.
View
20.
Lau J, Minett M, Zhao J, Dennehy U, Wang F, Wood J
. Temporal control of gene deletion in sensory ganglia using a tamoxifen-inducible Advillin-Cre-ERT2 recombinase mouse. Mol Pain. 2011; 7:100.
PMC: 3260248.
DOI: 10.1186/1744-8069-7-100.
View