6.
Farhadian S, Reisert H, McAlpine L, Chiarella J, Kosana P, Yoon J
. Self-Reported Neuropsychiatric Post-COVID-19 Condition and CSF Markers of Neuroinflammation. JAMA Netw Open. 2023; 6(11):e2342741.
PMC: 10638645.
DOI: 10.1001/jamanetworkopen.2023.42741.
View
7.
Khan M, Yoo S, Clijsters M, Backaert W, Vanstapel A, Speleman K
. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021; 184(24):5932-5949.e15.
PMC: 8564600.
DOI: 10.1016/j.cell.2021.10.027.
View
8.
Ellul M, Benjamin L, Singh B, Lant S, Michael B, Easton A
. Neurological associations of COVID-19. Lancet Neurol. 2020; 19(9):767-783.
PMC: 7332267.
DOI: 10.1016/S1474-4422(20)30221-0.
View
9.
Al Saiegh F, Ghosh R, Leibold A, Avery M, Schmidt R, Theofanis T
. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J Neurol Neurosurg Psychiatry. 2020; 91(8):846-848.
DOI: 10.1136/jnnp-2020-323522.
View
10.
Wu Z, McGoogan J
. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13):1239-1242.
DOI: 10.1001/jama.2020.2648.
View
11.
Yu Y, Travaglio M, Popovic R, Leal N, Martins L
. Alzheimer's and Parkinson's Diseases Predict Different COVID-19 Outcomes: A UK Biobank Study. Geriatrics (Basel). 2021; 6(1).
PMC: 7839041.
DOI: 10.3390/geriatrics6010010.
View
12.
Brunjes P
. Unilateral naris closure and olfactory system development. Brain Res Brain Res Rev. 1994; 19(1):146-60.
DOI: 10.1016/0165-0173(94)90007-8.
View
13.
Capelli S, Caroli A, Barletta A, Arrigoni A, Napolitano A, Pezzetti G
. MRI evidence of olfactory system alterations in patients with COVID-19 and neurological symptoms. J Neurol. 2023; 270(3):1195-1206.
PMC: 9850323.
DOI: 10.1007/s00415-023-11561-0.
View
14.
Tolleson C, Claassen D
. The function of tyrosine hydroxylase in the normal and Parkinsonian brain. CNS Neurol Disord Drug Targets. 2012; 11(4):381-6.
DOI: 10.2174/187152712800792794.
View
15.
Khan S, Lindroth H, Perkins A, Jamil Y, Wang S, Roberts S
. Delirium Incidence, Duration, and Severity in Critically Ill Patients With Coronavirus Disease 2019. Crit Care Explor. 2020; 2(12):e0290.
PMC: 7690767.
DOI: 10.1097/CCE.0000000000000290.
View
16.
Sudre C, Keshet A, Graham M, Joshi A, Shilo S, Rossman H
. Anosmia, ageusia, and other COVID-19-like symptoms in association with a positive SARS-CoV-2 test, across six national digital surveillance platforms: an observational study. Lancet Digit Health. 2021; 3(9):e577-e586.
PMC: 8297994.
DOI: 10.1016/S2589-7500(21)00115-1.
View
17.
Frosolini A, Parrino D, Fabbris C, Fantin F, Inches I, Invitto S
. Magnetic Resonance Imaging Confirmed Olfactory Bulb Reduction in Long COVID-19: Literature Review and Case Series. Brain Sci. 2022; 12(4).
PMC: 9029157.
DOI: 10.3390/brainsci12040430.
View
18.
Kim J, Chang I, Kim Y, Min C, Yoo D, Choi H
. The Association of Pre-existing Diagnoses of Alzheimer's Disease and Parkinson's Disease and Coronavirus Disease 2019 Infection, Severity and Mortality: Results From the Korean National Health Insurance Database. Front Aging Neurosci. 2022; 14:821235.
PMC: 8934421.
DOI: 10.3389/fnagi.2022.821235.
View
19.
Xing Y, Sapuan A, Dineen R, Auer D
. Life span pigmentation changes of the substantia nigra detected by neuromelanin-sensitive MRI. Mov Disord. 2018; 33(11):1792-1799.
PMC: 6659388.
DOI: 10.1002/mds.27502.
View
20.
Apple A, Oddi A, Peluso M, Asken B, Henrich T, Kelly J
. Risk factors and abnormal cerebrospinal fluid associate with cognitive symptoms after mild COVID-19. Ann Clin Transl Neurol. 2022; 9(2):221-226.
PMC: 8862406.
DOI: 10.1002/acn3.51498.
View