6.
Abou Ghayda R, Cannarella R, Calogero A, Shah R, Rambhatla A, Zohdy W
. Artificial Intelligence in Andrology: From Semen Analysis to Image Diagnostics. World J Mens Health. 2023; 42(1):39-61.
PMC: 10782130.
DOI: 10.5534/wjmh.230050.
View
7.
Sang Q, Ray P, Wang L
. Understanding the genetics of human infertility. Science. 2023; 380(6641):158-163.
DOI: 10.1126/science.adf7760.
View
8.
Shaker F, Monadjemi S, Alirezaie J, Naghsh-Nilchi A
. A dictionary learning approach for human sperm heads classification. Comput Biol Med. 2017; 91:181-190.
DOI: 10.1016/j.compbiomed.2017.10.009.
View
9.
Valiuskaite V, Raudonis V, Maskeliunas R, Damasevicius R, Krilavicius T
. Deep Learning Based Evaluation of Spermatozoid Motility for Artificial Insemination. Sensors (Basel). 2020; 21(1).
PMC: 7795243.
DOI: 10.3390/s21010072.
View
10.
Staine L, Kohn J, Kohn T
. Automated identification of rare sperm becomes possible: Is sperm selection the next frontier in male infertility?. Fertil Steril. 2022; 118(1):100.
DOI: 10.1016/j.fertnstert.2022.05.005.
View
11.
Auger J, Eustache F, Chevrier C, Jegou B
. Spatiotemporal trends in human semen quality. Nat Rev Urol. 2022; 19(10):597-626.
PMC: 9383660.
DOI: 10.1038/s41585-022-00626-w.
View
12.
Lee R, Witherspoon L, Robinson M, Lee J, Duffy S, Flannigan R
. Automated rare sperm identification from low-magnification microscopy images of dissociated microsurgical testicular sperm extraction samples using deep learning. Fertil Steril. 2022; 118(1):90-99.
DOI: 10.1016/j.fertnstert.2022.03.011.
View
13.
Lian J, Yin Y, Li L, Wang Z, Zhou Y
. Small Object Detection in Traffic Scenes Based on Attention Feature Fusion. Sensors (Basel). 2021; 21(9).
PMC: 8123487.
DOI: 10.3390/s21093031.
View
14.
Agarwal A, Sharma R, Gupta S, Finelli R, Parekh N, Panner Selvam M
. Sperm Morphology Assessment in the Era of Intracytoplasmic Sperm Injection: Reliable Results Require Focus on Standardization, Quality Control, and Training. World J Mens Health. 2021; 40(3):347-360.
PMC: 9253798.
DOI: 10.5534/wjmh.210054.
View
15.
Sato T, Kishi H, Murakata S, Hayashi Y, Hattori T, Nakazawa S
. A new deep-learning model using YOLOv3 to support sperm selection during intracytoplasmic sperm injection procedure. Reprod Med Biol. 2022; 21(1):e12454.
PMC: 8979154.
DOI: 10.1002/rmb2.12454.
View
16.
Thambawita V, Hicks S, Storas A, Nguyen T, Andersen J, Witczak O
. VISEM-Tracking, a human spermatozoa tracking dataset. Sci Data. 2023; 10(1):260.
PMC: 10167330.
DOI: 10.1038/s41597-023-02173-4.
View
17.
Zheng Y, Yin H, Zhou C, Zhou W, Huan Z, Ma W
. A Hand-Held Platform for Boar Sperm Viability Diagnosis Based on Smartphone. Biosensors (Basel). 2023; 13(11).
PMC: 10669104.
DOI: 10.3390/bios13110978.
View
18.
Mazzilli R, Rucci C, Vaiarelli A, Cimadomo D, Ubaldi F, Foresta C
. Male factor infertility and assisted reproductive technologies: indications, minimum access criteria and outcomes. J Endocrinol Invest. 2023; 46(6):1079-1085.
PMC: 10185595.
DOI: 10.1007/s40618-022-02000-4.
View
19.
Haugen T, Witczak O, Hicks S, Bjorndahl L, Andersen J, Riegler M
. Sperm motility assessed by deep convolutional neural networks into WHO categories. Sci Rep. 2023; 13(1):14777.
PMC: 10484948.
DOI: 10.1038/s41598-023-41871-2.
View
20.
Baldi E, Gallagher M, Krasnyak S, Kirkman-Brown J
. Extended semen examinations in the sixth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen: contributing to the understanding of the function of the male reproductive system. Fertil Steril. 2022; 117(2):252-257.
DOI: 10.1016/j.fertnstert.2021.11.034.
View