6.
Moon J, Donig J, Kramer S, Poehlein A, Daniel R, Muller V
. Formate metabolism in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol. 2021; 23(8):4214-4227.
DOI: 10.1111/1462-2920.15598.
View
7.
Schuchmann K, Muller V
. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol. 2014; 12(12):809-21.
DOI: 10.1038/nrmicro3365.
View
8.
Tanner R, Miller L, Yang D
. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol. 1993; 43(2):232-6.
DOI: 10.1099/00207713-43-2-232.
View
9.
Hermann M, Teleki A, Weitz S, Niess A, Freund A, Bengelsdorf F
. Electron availability in CO , CO and H mixtures constrains flux distribution, energy management and product formation in Clostridium ljungdahlii. Microb Biotechnol. 2020; 13(6):1831-1846.
PMC: 7533319.
DOI: 10.1111/1751-7915.13625.
View
10.
Bourgade B, Minton N, Islam M
. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol Rev. 2021; 45(2).
PMC: 8351756.
DOI: 10.1093/femsre/fuab008.
View
11.
Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A
. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A. 2010; 107(29):13087-92.
PMC: 2919952.
DOI: 10.1073/pnas.1004716107.
View
12.
Sanchez-Andrea I, Guedes I, Hornung B, Boeren S, Lawson C, Sousa D
. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun. 2020; 11(1):5090.
PMC: 7547702.
DOI: 10.1038/s41467-020-18906-7.
View
13.
Liou J, Balkwill D, Drake G, Tanner R
. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol. 2005; 55(Pt 5):2085-2091.
DOI: 10.1099/ijs.0.63482-0.
View
14.
Agrawal R, Bhagia S, Satlewal A, Ragauskas A
. Urban mining from biomass, brine, sewage sludge, phosphogypsum and e-waste for reducing the environmental pollution: Current status of availability, potential, and technologies with a focus on LCA and TEA. Environ Res. 2023; 224:115523.
DOI: 10.1016/j.envres.2023.115523.
View
15.
Oliveira L, Rohrenbach S, Holzmuller V, Weuster-Botz D
. Continuous sulfide supply enhanced autotrophic production of alcohols with Clostridium ragsdalei. Bioresour Bioprocess. 2024; 9(1):15.
PMC: 10992549.
DOI: 10.1186/s40643-022-00506-6.
View
16.
Isom C, Nanny M, Tanner R
. Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen "Clostridium ragsdalei". J Ind Microbiol Biotechnol. 2014; 42(1):29-38.
DOI: 10.1007/s10295-014-1543-z.
View
17.
Mandra Harahap B, Ahring B
. Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review. Microorganisms. 2023; 11(4).
PMC: 10143712.
DOI: 10.3390/microorganisms11040995.
View
18.
Doll K, Ruckel A, Kampf P, Wende M, Weuster-Botz D
. Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioprocess Biosyst Eng. 2018; 41(10):1403-1416.
DOI: 10.1007/s00449-018-1969-1.
View
19.
Franco F, Rettenmaier C, Jeon H, Cuenya B
. Transition metal-based catalysts for the electrochemical CO reduction: from atoms and molecules to nanostructured materials. Chem Soc Rev. 2020; 49(19):6884-6946.
DOI: 10.1039/d0cs00835d.
View
20.
WINSOR C
. The Gompertz Curve as a Growth Curve. Proc Natl Acad Sci U S A. 1932; 18(1):1-8.
PMC: 1076153.
DOI: 10.1073/pnas.18.1.1.
View