6.
Sugiishi T, Nakamura H
. Zinc(II)-catalyzed redox cross-dehydrogenative coupling of propargylic amines and terminal alkynes for synthesis of N-tethered 1,6-enynes. J Am Chem Soc. 2012; 134(5):2504-7.
DOI: 10.1021/ja211092q.
View
7.
Goutham K, Mangina N, Suresh S, Raghavaiah P, Karunakar G
. Gold-catalysed cyclisation of N-propargylic β-enaminones to form 3-methylene-1-pyrroline derivatives. Org Biomol Chem. 2014; 12(18):2869-73.
DOI: 10.1039/c3ob42513d.
View
8.
Peshkov V, Pereshivko O, Van der Eycken E
. A walk around the A3-coupling. Chem Soc Rev. 2012; 41(10):3790-807.
DOI: 10.1039/c2cs15356d.
View
9.
Chajkowski-Scarry S, Rimoldi J
. Monoamine oxidase A and B substrates: probing the pathway for drug development. Future Med Chem. 2014; 6(6):697-717.
DOI: 10.4155/fmc.14.23.
View
10.
Pierce C, Nguyen M, Larsen C
. Copper/titanium catalysis forms fully substituted carbon centers from the direct coupling of acyclic ketones, amines, and alkynes. Angew Chem Int Ed Engl. 2012; 51(49):12289-92.
DOI: 10.1002/anie.201206674.
View
11.
Zorba L, Egana E, Gomez-Bengoa E, Vougioukalakis G
. Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones. ACS Omega. 2021; 6(36):23329-23346.
PMC: 8444324.
DOI: 10.1021/acsomega.1c03092.
View
12.
Pisani L, Catto M, Nicolotti O, Grossi G, Di Braccio M, Soto-Otero R
. Fine molecular tuning at position 4 of 2H-chromen-2-one derivatives in the search of potent and selective monoamine oxidase B inhibitors. Eur J Med Chem. 2013; 70:723-39.
DOI: 10.1016/j.ejmech.2013.09.034.
View
13.
Adejumo T, Tzouras N, Zorba L, Radanovic D, Pevec A, Grubisic S
. Synthesis, Characterization, Catalytic Activity, and DFT Calculations of Zn(II) Hydrazone Complexes. Molecules. 2020; 25(18).
PMC: 7570652.
DOI: 10.3390/molecules25184043.
View
14.
Albreht A, Vovk I, Mavri J, Marco-Contelles J, Ramsay R
. Evidence for a Cyanine Link Between Propargylamine Drugs and Monoamine Oxidase Clarifies the Inactivation Mechanism. Front Chem. 2018; 6:169.
PMC: 5985292.
DOI: 10.3389/fchem.2018.00169.
View
15.
Wang B, Chen Y, Zhou L, Wang J, Tung C, Xu Z
. Synthesis of Oxazoles by Tandem Cycloisomerization/Allylic Alkylation of Propargyl Amides with Allylic Alcohols: Zn(OTf)2 as π Acid and σ Acid Catalyst. J Org Chem. 2015; 80(24):12718-24.
DOI: 10.1021/acs.joc.5b02382.
View
16.
Polindara-Garcia L, Miranda L
. Two-step synthesis of 2,3-dihydropyrroles via a formal 5-endo cycloisomerization of Ugi 4-CR/propargyl adducts. Org Lett. 2012; 14(21):5408-11.
DOI: 10.1021/ol3024727.
View
17.
Suzuki S, Saito A
. Single-Step Synthesis of Iodinated Oxazoles from N-Propargyl Amides Mediated by I/Iodosylbenzene/Trimethylsilyl Trifluoromethanesulfonate Systems. J Org Chem. 2017; 82(22):11859-11864.
DOI: 10.1021/acs.joc.7b01563.
View
18.
Finberg J, Rabey J
. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front Pharmacol. 2016; 7:340.
PMC: 5067815.
DOI: 10.3389/fphar.2016.00340.
View
19.
Marco-Contelles J, Unzeta M, Bolea I, Esteban G, Ramsay R, Romero A
. ASS234, As a New Multi-Target Directed Propargylamine for Alzheimer's Disease Therapy. Front Neurosci. 2016; 10:294.
PMC: 4923252.
DOI: 10.3389/fnins.2016.00294.
View
20.
Hoover
. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys. 1985; 31(3):1695-1697.
DOI: 10.1103/physreva.31.1695.
View