6.
Tripathi S, Gabriel K, Dheer S, Parajuli A, Augustin A, Elahi A
. Understanding Biases and Disparities in Radiology AI Datasets: A Review. J Am Coll Radiol. 2023; 20(9):836-841.
DOI: 10.1016/j.jacr.2023.06.015.
View
7.
Zuo D, Yang L, Jin Y, Qi H, Liu Y, Ren L
. Machine learning-based models for the prediction of breast cancer recurrence risk. BMC Med Inform Decis Mak. 2023; 23(1):276.
PMC: 10688055.
DOI: 10.1186/s12911-023-02377-z.
View
8.
Patkar V, Acosta D, Davidson T, Jones A, Fox J, Keshtgar M
. Cancer multidisciplinary team meetings: evidence, challenges, and the role of clinical decision support technology. Int J Breast Cancer. 2012; 2011:831605.
PMC: 3262556.
DOI: 10.4061/2011/831605.
View
9.
Tripathi S, Tabari A, Mansur A, Dabbara H, Bridge C, Daye D
. From Machine Learning to Patient Outcomes: A Comprehensive Review of AI in Pancreatic Cancer. Diagnostics (Basel). 2024; 14(2).
PMC: 10814554.
DOI: 10.3390/diagnostics14020174.
View
10.
Hanley J, McNeil B
. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982; 143(1):29-36.
DOI: 10.1148/radiology.143.1.7063747.
View
11.
Taylor C, Munro A, Glynne-Jones R, Griffith C, Trevatt P, Richards M
. Multidisciplinary team working in cancer: what is the evidence?. BMJ. 2010; 340:c951.
DOI: 10.1136/bmj.c951.
View
12.
Dixon E, Abdalla E, Schwarz R, Vauthey J
. AHPBA/SSO/SSAT sponsored Consensus Conference on Multidisciplinary Treatment of Hepatocellular Carcinoma. HPB (Oxford). 2010; 12(5):287-8.
PMC: 2951813.
DOI: 10.1111/j.1477-2574.2010.00184.x.
View
13.
Ross E, Shah N, Dalman R, Nead K, Cooke J, Leeper N
. The use of machine learning for the identification of peripheral artery disease and future mortality risk. J Vasc Surg. 2016; 64(5):1515-1522.e3.
PMC: 5079774.
DOI: 10.1016/j.jvs.2016.04.026.
View
14.
Kakarmath S, Golas S, Felsted J, Kvedar J, Jethwani K, Agboola S
. Validating a Machine Learning Algorithm to Predict 30-Day Re-Admissions in Patients With Heart Failure: Protocol for a Prospective Cohort Study. JMIR Res Protoc. 2018; 7(9):e176.
PMC: 6231891.
DOI: 10.2196/resprot.9466.
View
15.
Maness D, Riley E, Studebaker G
. Hepatitis C: Diagnosis and Management. Am Fam Physician. 2021; 104(6):626-635.
View
16.
Li Y, Wu X, Yang P, Jiang G, Luo Y
. Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis. Genomics Proteomics Bioinformatics. 2022; 20(5):850-866.
PMC: 10025752.
DOI: 10.1016/j.gpb.2022.11.003.
View
17.
Rahman H, Ottom M, Dinov I
. Machine learning-based colorectal cancer prediction using global dietary data. BMC Cancer. 2023; 23(1):144.
PMC: 9921106.
DOI: 10.1186/s12885-023-10587-x.
View
18.
Nazari E, Naderi H, Tabadkani M, Arefnezhad R, Farzin A, Dashtiahangar M
. Breast cancer prediction using different machine learning methods applying multi factors. J Cancer Res Clin Oncol. 2023; 149(19):17133-17146.
DOI: 10.1007/s00432-023-05388-5.
View
19.
Sinha I, Aluthge D, Chen E, Sarkar I, Ahn S
. Machine Learning Offers Exciting Potential for Predicting Postprocedural Outcomes: A Framework for Developing Random Forest Models in IR. J Vasc Interv Radiol. 2020; 31(6):1018-1024.e4.
PMC: 10625161.
DOI: 10.1016/j.jvir.2019.11.030.
View
20.
Lin F, Pokorny A, Teng C, Dear R, Epstein R
. Computational prediction of multidisciplinary team decision-making for adjuvant breast cancer drug therapies: a machine learning approach. BMC Cancer. 2016; 16(1):929.
PMC: 5131452.
DOI: 10.1186/s12885-016-2972-z.
View