6.
Xie Z, Zhang Z, Zou X, Huang J, Ruas P, Thompson D
. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol. 2004; 137(1):176-89.
PMC: 548849.
DOI: 10.1104/pp.104.054312.
View
7.
Jiang J, Xi H, Dai Z, Lecourieux F, Yuan L, Liu X
. VvWRKY8 represses stilbene synthase genes through direct interaction with VvMYB14 to control resveratrol biosynthesis in grapevine. J Exp Bot. 2018; 70(2):715-729.
PMC: 6322584.
DOI: 10.1093/jxb/ery401.
View
8.
Kan J, Gao G, He Q, Gao Q, Jiang C, Ahmar S
. Genome-Wide Characterization of WRKY Transcription Factors Revealed Gene Duplication and Diversification in Populations of Wild to Domesticated Barley. Int J Mol Sci. 2021; 22(10).
PMC: 8160967.
DOI: 10.3390/ijms22105354.
View
9.
He G, Xu J, Wang Y, Liu J, Li P, Chen M
. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol. 2016; 16(1):116.
PMC: 4877946.
DOI: 10.1186/s12870-016-0806-4.
View
10.
Guillaumie S, Mzid R, Mechin V, Leon C, Hichri I, Destrac-Irvine A
. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol Biol. 2009; 72(1-2):215-34.
DOI: 10.1007/s11103-009-9563-1.
View
11.
Khoso M, Hussain A, Ritonga F, Ali Q, Channa M, Alshegaihi R
. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. Front Plant Sci. 2022; 13:1039329.
PMC: 9679293.
DOI: 10.3389/fpls.2022.1039329.
View
12.
Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C
. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science. 2000; 290(5490):344-7.
DOI: 10.1126/science.290.5490.344.
View
13.
Maeo K, Hayashi S, Morikami A, Nakamura K
. Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins. Biosci Biotechnol Biochem. 2002; 65(11):2428-36.
DOI: 10.1271/bbb.65.2428.
View
14.
OMalley M, Wideman J, Ruiz-Trillo I
. Losing Complexity: The Role of Simplification in Macroevolution. Trends Ecol Evol. 2016; 31(8):608-621.
DOI: 10.1016/j.tree.2016.04.004.
View
15.
Katoh K, Standley D
. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772-80.
PMC: 3603318.
DOI: 10.1093/molbev/mst010.
View
16.
Bakshi M, Oelmuller R
. WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav. 2014; 9(2):e27700.
PMC: 4091213.
DOI: 10.4161/psb.27700.
View
17.
Gao H, Wang Y, Xu P, Zhang Z
. Overexpression of a WRKY Transcription Factor Enhances Drought Stress Tolerance in Transgenic Wheat. Front Plant Sci. 2018; 9:997.
PMC: 6090177.
DOI: 10.3389/fpls.2018.00997.
View
18.
Takahashi F, Shinozaki K
. Long-distance signaling in plant stress response. Curr Opin Plant Biol. 2018; 47:106-111.
DOI: 10.1016/j.pbi.2018.10.006.
View
19.
Joshi R, Anwar K, Das P, Singla-Pareek S, Pareek A
. Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines. Methods Mol Biol. 2017; 1679:83-95.
DOI: 10.1007/978-1-4939-7337-8_5.
View
20.
Wang C, Ru J, Liu Y, Yang J, Li M, Xu Z
. The Maize WRKY Transcription Factor ZmWRKY40 Confers Drought Resistance in Transgenic . Int J Mol Sci. 2018; 19(9).
PMC: 6164628.
DOI: 10.3390/ijms19092580.
View