6.
Tsui H, van Kampen S, Han S, Meraviglia V, van Ham W, Casini S
. Desmosomal protein degradation as an underlying cause of arrhythmogenic cardiomyopathy. Sci Transl Med. 2023; 15(688):eadd4248.
DOI: 10.1126/scitranslmed.add4248.
View
7.
Lyon R, Mezzano V, Wright A, Pfeiffer E, Chuang J, Banares K
. Connexin defects underlie arrhythmogenic right ventricular cardiomyopathy in a novel mouse model. Hum Mol Genet. 2013; 23(5):1134-50.
PMC: 3919010.
DOI: 10.1093/hmg/ddt508.
View
8.
Yang Z, Bowles N, Scherer S, Taylor M, Kearney D, Ge S
. Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Res. 2006; 99(6):646-55.
DOI: 10.1161/01.RES.0000241482.19382.c6.
View
9.
Manring H, Dorn L, Ex-Willey A, Accornero F, Ackermann M
. At the heart of inter- and intracellular signaling: the intercalated disc. Biophys Rev. 2018; 10(4):961-971.
PMC: 6082301.
DOI: 10.1007/s12551-018-0430-7.
View
10.
Rizzo S, Lodder E, Verkerk A, Wolswinkel R, Beekman L, Pilichou K
. Intercalated disc abnormalities, reduced Na(+) current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes. Cardiovasc Res. 2012; 95(4):409-18.
DOI: 10.1093/cvr/cvs219.
View
11.
Chen S, Gurha P, Lombardi R, Ruggiero A, Willerson J, Marian A
. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res. 2013; 114(3):454-68.
PMC: 3946717.
DOI: 10.1161/CIRCRESAHA.114.302810.
View
12.
Nielsen M, van Opbergen C, van Veen T, Delmar M
. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev. 2023; 103(3):2271-2319.
PMC: 10191137.
DOI: 10.1152/physrev.00021.2022.
View
13.
James C, Syrris P, van Tintelen J, Calkins H
. The role of genetics in cardiovascular disease: arrhythmogenic cardiomyopathy. Eur Heart J. 2020; 41(14):1393-1400.
DOI: 10.1093/eurheartj/ehaa141.
View
14.
Zhao G, Qiu Y, Zhang H, Yang D
. Intercalated discs: cellular adhesion and signaling in heart health and diseases. Heart Fail Rev. 2018; 24(1):115-132.
DOI: 10.1007/s10741-018-9743-7.
View
15.
Cheedipudi S, Hu J, Fan S, Yuan P, Karmouch J, Czernuszewicz G
. Exercise restores dysregulated gene expression in a mouse model of arrhythmogenic cardiomyopathy. Cardiovasc Res. 2019; 116(6):1199-1213.
PMC: 7177479.
DOI: 10.1093/cvr/cvz199.
View
16.
Calore M, Lorenzon A, Vitiello L, Poloni G, Khan M, Beffagna G
. A novel murine model for arrhythmogenic cardiomyopathy points to a pathogenic role of Wnt signalling and miRNA dysregulation. Cardiovasc Res. 2018; 115(4):739-751.
DOI: 10.1093/cvr/cvy253.
View
17.
Rampazzo A, Calore M, van Hengel J, van Roy F
. Intercalated discs and arrhythmogenic cardiomyopathy. Circ Cardiovasc Genet. 2014; 7(6):930-40.
DOI: 10.1161/CIRCGENETICS.114.000645.
View
18.
Fu M, Hu Y, Lan T, Guan K, Luo T, Luo M
. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther. 2022; 7(1):376.
PMC: 9643504.
DOI: 10.1038/s41392-022-01191-9.
View
19.
Zhang B, Wu Y, Yang X, Xiang Y, Yang B
. Molecular insight into arrhythmogenic cardiomyopathy caused by DSG2 mutations. Biomed Pharmacother. 2023; 167:115448.
DOI: 10.1016/j.biopha.2023.115448.
View
20.
Soliman H, Paylor B, Scott R, Lemos D, Chang C, Arostegui M
. Pathogenic Potential of Hic1-Expressing Cardiac Stromal Progenitors. Cell Stem Cell. 2020; 26(2):205-220.e8.
DOI: 10.1016/j.stem.2019.12.008.
View