» Articles » PMID: 38890433

Architecture of the RNF1 Complex That Drives Biological Nitrogen Fixation

Overview
Journal Nat Chem Biol
Date 2024 Jun 18
PMID 38890433
Authors
Affiliations
Soon will be listed here.
Abstract

Biological nitrogen fixation requires substantial metabolic energy in form of ATP as well as low-potential electrons that must derive from central metabolism. During aerobic growth, the free-living soil diazotroph Azotobacter vinelandii transfers electrons from the key metabolite NADH to the low-potential ferredoxin FdxA that serves as a direct electron donor to the dinitrogenase reductases. This process is mediated by the RNF complex that exploits the proton motive force over the cytoplasmic membrane to lower the midpoint potential of the transferred electron. Here we report the cryogenic electron microscopy structure of the nitrogenase-associated RNF complex of A. vinelandii, a seven-subunit membrane protein assembly that contains four flavin cofactors and six iron-sulfur centers. Its function requires the strict coupling of electron and proton transfer but also involves major conformational changes within the assembly that can be traced with a combination of electron microscopy and modeling.

Citing Articles

Molecular principles of redox-coupled sodium pumping of the ancient Rnf machinery.

Kumar A, Roth J, Kim H, Saura P, Bohn S, Reif-Trauttmansdorff T Nat Commun. 2025; 16(1):2302.

PMID: 40055346 PMC: 11889175. DOI: 10.1038/s41467-025-57375-8.


Conformational protection of molybdenum nitrogenase by Shethna protein II.

Franke P, Freiberger S, Zhang L, Einsle O Nature. 2025; 637(8047):998-1004.

PMID: 39779845 PMC: 11754109. DOI: 10.1038/s41586-024-08355-3.


Protein interactions in human pathogens revealed through deep learning.

Humphreys I, Zhang J, Baek M, Wang Y, Krishnakumar A, Pei J Nat Microbiol. 2024; 9(10):2642-2652.

PMID: 39294458 PMC: 11445079. DOI: 10.1038/s41564-024-01791-x.


Chains of death.

Zheng J, Proneth B Nat Chem Biol. 2024; 20(7):799-800.

PMID: 38321207 DOI: 10.1038/s41589-023-01541-w.


A new twist to increase ion flow.

Chen J, Sanguinetti M Nat Chem Biol. 2024; 20(7):801-802.

PMID: 38267668 DOI: 10.1038/s41589-023-01523-y.

References
1.
Canfield D, Glazer A, Falkowski P . The evolution and future of Earth's nitrogen cycle. Science. 2010; 330(6001):192-6. DOI: 10.1126/science.1186120. View

2.
Einsle O, Rees D . Structural Enzymology of Nitrogenase Enzymes. Chem Rev. 2020; 120(12):4969-5004. PMC: 8606229. DOI: 10.1021/acs.chemrev.0c00067. View

3.
Seefeldt L, Yang Z, Lukoyanov D, Harris D, Dean D, Raugei S . Reduction of Substrates by Nitrogenases. Chem Rev. 2020; 120(12):5082-5106. PMC: 7703680. DOI: 10.1021/acs.chemrev.9b00556. View

4.
Hoffman B, Lukoyanov D, Yang Z, Dean D, Seefeldt L . Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev. 2014; 114(8):4041-62. PMC: 4012840. DOI: 10.1021/cr400641x. View

5.
Rohde M, Sippel D, Trncik C, Andrade S, Einsle O . The Critical E State of Nitrogenase Catalysis. Biochemistry. 2018; 57(38):5497-5504. DOI: 10.1021/acs.biochem.8b00509. View