» Articles » PMID: 38886504

Enhancement of Erythropoietic Output by Cas9-mediated Insertion of a Natural Variant in Haematopoietic Stem and Progenitor Cells

Overview
Journal Nat Biomed Eng
Publisher Springer Nature
Date 2024 Jun 17
PMID 38886504
Authors
Affiliations
Soon will be listed here.
Abstract

Some gene polymorphisms can lead to monogenic diseases, whereas other polymorphisms may confer beneficial traits. A well-characterized example is congenital erythrocytosis-the non-pathogenic hyper-production of red blood cells-that is caused by a truncated erythropoietin receptor. Here we show that Cas9-mediated genome editing in CD34 human haematopoietic stem and progenitor cells (HSPCs) can recreate the truncated form of the erythropoietin receptor, leading to substantial increases in erythropoietic output. We also show that combining the expression of the cDNA of a truncated erythropoietin receptor with a previously reported genome-editing strategy to fully replace the HBA1 gene with an HBB transgene in HSPCs (to restore normal haemoglobin production in cells with a β-thalassaemia phenotype) gives the edited HSPCs and the healthy red blood cell phenotype a proliferative advantage. Combining knowledge of human genetics with precise genome editing to insert natural human variants into therapeutic cells may facilitate safer and more effective genome-editing therapies for patients with genetic diseases.

Citing Articles

Engineering synthetic signaling receptors to enable erythropoietin-free erythropoiesis.

Shah A, Majeti K, Ekman F, Selvaraj S, Sharma D, Sinha R Nat Commun. 2025; 16(1):1140.

PMID: 39880867 PMC: 11779867. DOI: 10.1038/s41467-025-56239-5.


Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells.

Chu S, Soupene E, Sharma D, Sinha R, McCreary T, Hernandez B Cell Rep. 2025; 44(1):115141.

PMID: 39754719 PMC: 11837859. DOI: 10.1016/j.celrep.2024.115141.


Introducing a hemoglobin G-Makassar variant in HSCs by in vivo base editing treats sickle cell disease in mice.

Li C, Georgakopoulou A, Paschoudi K, Anderson A, Huang L, Gil S Mol Ther. 2024; 32(12):4353-4371.

PMID: 39489920 PMC: 11638829. DOI: 10.1016/j.ymthe.2024.10.018.

References
1.
Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K . Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009; 360(7):692-8. DOI: 10.1056/NEJMoa0802905. View

2.
Schiroli G, Conti A, Ferrari S, Della Volpe L, Jacob A, Albano L . Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response. Cell Stem Cell. 2019; 24(4):551-565.e8. PMC: 6458988. DOI: 10.1016/j.stem.2019.02.019. View

3.
Charlesworth C, Camarena J, Cromer M, Vaidyanathan S, Bak R, Carte J . Priming Human Repopulating Hematopoietic Stem and Progenitor Cells for Cas9/sgRNA Gene Targeting. Mol Ther Nucleic Acids. 2018; 12:89-104. PMC: 6023838. DOI: 10.1016/j.omtn.2018.04.017. View

4.
Frangoul H, Altshuler D, Cappellini M, Chen Y, Domm J, Eustace B . CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N Engl J Med. 2020; 384(3):252-260. DOI: 10.1056/NEJMoa2031054. View

5.
Cromer M, Majeti K, Rettig G, Murugan K, Kurgan G, Bode N . Comparative analysis of CRISPR off-target discovery tools following ex vivo editing of CD34 hematopoietic stem and progenitor cells. Mol Ther. 2023; 31(4):1074-1087. PMC: 10124080. DOI: 10.1016/j.ymthe.2023.02.011. View