6.
Yu H, Kielczewska A, Rozek A, Takenaka S, Li Y, Thorson L
. Sequestosome-1/p62 is the key intracellular target of innate defense regulator peptide. J Biol Chem. 2009; 284(52):36007-36011.
PMC: 2794716.
DOI: 10.1074/jbc.C109.073627.
View
7.
Kaelin Jr W
. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer. 2002; 2(9):673-82.
DOI: 10.1038/nrc885.
View
8.
Doherty J, Cleveland J
. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013; 123(9):3685-92.
PMC: 3754272.
DOI: 10.1172/JCI69741.
View
9.
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N
. The cancer metabolic reprogramming and immune response. Mol Cancer. 2021; 20(1):28.
PMC: 7863491.
DOI: 10.1186/s12943-021-01316-8.
View
10.
Li X, Wenes M, Romero P, Huang S, Fendt S, Ho P
. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 2019; 16(7):425-441.
DOI: 10.1038/s41571-019-0203-7.
View
11.
Qiu B, Ackerman D, Sanchez D, Li B, Ochocki J, Grazioli A
. HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma. Cancer Discov. 2015; 5(6):652-67.
PMC: 4456212.
DOI: 10.1158/2159-8290.CD-14-1507.
View
12.
Carvalho-Santos Z, Cardoso-Figueiredo R, Elias A, Tastekin I, Baltazar C, Ribeiro C
. Cellular metabolic reprogramming controls sugar appetite in Drosophila. Nat Metab. 2020; 2(9):958-973.
DOI: 10.1038/s42255-020-0266-x.
View
13.
Abdel-Wahab A, Mahmoud W, Al-Harizy R
. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019; 150:104511.
DOI: 10.1016/j.phrs.2019.104511.
View
14.
Wettersten H, Abu Aboud O, Lara Jr P, Weiss R
. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol. 2017; 13(7):410-419.
DOI: 10.1038/nrneph.2017.59.
View
15.
Hakimi A, Reznik E, Lee C, Creighton C, Brannon A, Luna A
. An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. Cancer Cell. 2016; 29(1):104-116.
PMC: 4809063.
DOI: 10.1016/j.ccell.2015.12.004.
View
16.
Kondo K, Kim W, Lechpammer M, Kaelin Jr W
. Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 2003; 1(3):E83.
PMC: 300692.
DOI: 10.1371/journal.pbio.0000083.
View
17.
Shroff E, Eberlin L, Dang V, Gouw A, Gabay M, Adam S
. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad Sci U S A. 2015; 112(21):6539-44.
PMC: 4450371.
DOI: 10.1073/pnas.1507228112.
View
18.
Li Y, Sha Z, Peng H
. Metabolic Reprogramming in Kidney Diseases: Evidence and Therapeutic Opportunities. Int J Nephrol. 2021; 2021:5497346.
PMC: 8560294.
DOI: 10.1155/2021/5497346.
View
19.
Hsieh J, Le V, Oyama T, Ricketts C, Ho T, Cheng E
. Chromosome 3p Loss-Orchestrated VHL, HIF, and Epigenetic Deregulation in Clear Cell Renal Cell Carcinoma. J Clin Oncol. 2018; :JCO2018792549.
PMC: 6299341.
DOI: 10.1200/JCO.2018.79.2549.
View
20.
Mannava S, Grachtchouk V, Wheeler L, Im M, Zhuang D, Slavina E
. Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle. 2008; 7(15):2392-400.
PMC: 3744895.
DOI: 10.4161/cc.6390.
View