6.
Yan Q, Wang X, Feng J, Mei L, Wang A
. Simple fabrication of bimetallic platinum-rhodium alloyed nano-multipods: A highly effective and recyclable catalyst for reduction of 4-nitrophenol and rhodamine B. J Colloid Interface Sci. 2020; 582(Pt B):701-710.
DOI: 10.1016/j.jcis.2020.08.062.
View
7.
Wang Y, Gao P, Wei Y, Jin Y, Sun S, Wang Z
. Silver nanoparticles decorated magnetic polymer composites (FeO@PS@Ag) as highly efficient reusable catalyst for the degradation of 4-nitrophenol and organic dyes. J Environ Manage. 2020; 278(Pt 1):111473.
DOI: 10.1016/j.jenvman.2020.111473.
View
8.
Xu X, Li M, Yang L, Hu B
. Remarkably and stable catalytic activity in reduction of 4-nitrophenol by sodium sesquicarbonate-supporting FeO@Pt. RSC Adv. 2023; 13(20):13556-13563.
PMC: 10155080.
DOI: 10.1039/d3ra01930f.
View
9.
Veisi H, Moradi S, Saljooqi A, Safarimehr P
. Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (FeO@TA/Ag) for highly active catalytic reduction of 4-nitrophenol, Rhodamine B and Methylene blue. Mater Sci Eng C Mater Biol Appl. 2019; 100:445-452.
DOI: 10.1016/j.msec.2019.03.036.
View
10.
Garg N, Bera S, Rastogi L, Ballal A, Balaramakrishna M
. Synthesis and characterization of L-asparagine stabilised gold nanoparticles: Catalyst for degradation of organic dyes. Spectrochim Acta A Mol Biomol Spectrosc. 2020; 232:118126.
DOI: 10.1016/j.saa.2020.118126.
View
11.
Nguyen T, Nguyen V, Phan T, Le V, Vasseghian Y, Trubitsyn M
. Novel biogenic silver and gold nanoparticles for multifunctional applications: Green synthesis, catalytic and antibacterial activity, and colorimetric detection of Fe(III) ions. Chemosphere. 2021; 287(Pt 3):132271.
DOI: 10.1016/j.chemosphere.2021.132271.
View
12.
Mejia Y, Bogireddy N
. Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. RSC Adv. 2022; 12(29):18661-18675.
PMC: 9228544.
DOI: 10.1039/d2ra02663e.
View
13.
Sachi , Singh A, Thirumal M
. Fabrication of AgNi Nano-alloy-Decorated ZnO Nanocomposites as an Efficient and Novel Hybrid Catalyst to Degrade Noxious Organic Pollutants. ACS Omega. 2021; 6(50):34771-34782.
PMC: 8697397.
DOI: 10.1021/acsomega.1c05266.
View
14.
Liang X, Cao K, Li W, Li X, McClements D, Hu K
. Tannic acid-fortified zein-pectin nanoparticles: Stability, properties, antioxidant activity, and in vitro digestion. Food Res Int. 2021; 145:110425.
DOI: 10.1016/j.foodres.2021.110425.
View
15.
Balakrishnan A, Gaware G, Chinthala M
. Heterojunction photocatalysts for the removal of nitrophenol: A systematic review. Chemosphere. 2022; 310:136853.
DOI: 10.1016/j.chemosphere.2022.136853.
View
16.
Saravanakumar K, Priya V, Balakumar V, Prabavathi S, Muthuraj V
. Noble metal nanoparticles (M = Ag, Au, Pd) decorated graphitic carbon nitride nanosheets for ultrafast catalytic reduction of anthropogenic pollutant, 4-nitrophenol. Environ Res. 2022; 212(Pt A):113185.
DOI: 10.1016/j.envres.2022.113185.
View
17.
Zhao X, Chang Y, Chen W, Wu Q, Pan X, Chen K
. Recent Progress in Pd-Based Nanocatalysts for Selective Hydrogenation. ACS Omega. 2022; 7(1):17-31.
PMC: 8756445.
DOI: 10.1021/acsomega.1c06244.
View
18.
Gao C, Lyu F, Yin Y
. Encapsulated Metal Nanoparticles for Catalysis. Chem Rev. 2020; 121(2):834-881.
DOI: 10.1021/acs.chemrev.0c00237.
View
19.
Lee H, Su Y, Tang H, Lee Y, Lee J, Hu C
. One-Pot Hydrothermal Synthesis of Carbon Dots as Fluorescent Probes for the Determination of Mercuric and Hypochlorite Ions. Nanomaterials (Basel). 2021; 11(7).
PMC: 8308378.
DOI: 10.3390/nano11071831.
View
20.
Xiang L, Liu L, Yuan R, Chai Y
. Aggregation-Induced Electrochemiluminescence of Copper Nanoclusters by Regulating Valence State Ratio of Cu(I)/Cu(0) for Ultrasensitive Detection of MicroRNA. Anal Chem. 2023; 95(9):4454-4460.
DOI: 10.1021/acs.analchem.2c05029.
View