6.
Hattenhauer O, Traebert M, Murer H, Biber J
. Regulation of small intestinal Na-P(i) type IIb cotransporter by dietary phosphate intake. Am J Physiol. 1999; 277(4):G756-62.
DOI: 10.1152/ajpgi.1999.277.4.G756.
View
7.
Danisi G, Bonjour J, Straub R
. Regulation of Na-dependent phosphate influx across the mucosal border of duodenum by 1,25-dihydroxycholecalciferol. Pflugers Arch. 1980; 388(3):227-32.
DOI: 10.1007/BF00658486.
View
8.
Peacock M
. Phosphate Metabolism in Health and Disease. Calcif Tissue Int. 2020; 108(1):3-15.
DOI: 10.1007/s00223-020-00686-3.
View
9.
Virkki L, Biber J, Murer H, Forster I
. Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol. 2007; 293(3):F643-54.
DOI: 10.1152/ajprenal.00228.2007.
View
10.
Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D
. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2005; 78(2):193-201.
PMC: 1380229.
DOI: 10.1086/499410.
View
11.
Bergwitz C, Roslin N, Tieder M, Loredo-Osti J, Bastepe M, Abu-Zahra H
. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2005; 78(2):179-92.
PMC: 1380228.
DOI: 10.1086/499409.
View
12.
Beck L, Karaplis A, Amizuka N, Hewson A, Ozawa H, Tenenhouse H
. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A. 1998; 95(9):5372-7.
PMC: 20268.
DOI: 10.1073/pnas.95.9.5372.
View
13.
Wagner C, Rubio-Aliaga I, Hernando N
. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatr Nephrol. 2017; 34(4):549-559.
DOI: 10.1007/s00467-017-3873-3.
View
14.
Jennings M
. Role of transporters in regulating mammalian intracellular inorganic phosphate. Front Pharmacol. 2023; 14:1163442.
PMC: 10097972.
DOI: 10.3389/fphar.2023.1163442.
View
15.
Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y
. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004; 19(3):429-35.
DOI: 10.1359/JBMR.0301264.
View
16.
Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S
. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001; 98(11):6500-5.
PMC: 33497.
DOI: 10.1073/pnas.101545198.
View
17.
White K, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom T, Econs M
. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001; 60(6):2079-86.
DOI: 10.1046/j.1523-1755.2001.00064.x.
View
18.
Carpenter T, Whyte M, Imel E, Boot A, Hogler W, Linglart A
. Burosumab Therapy in Children with X-Linked Hypophosphatemia. N Engl J Med. 2018; 378(21):1987-1998.
DOI: 10.1056/NEJMoa1714641.
View
19.
Asada M, Shinomiya M, Suzuki M, Honda E, Sugimoto R, Ikekita M
. Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim Biophys Acta. 2008; 1790(1):40-8.
DOI: 10.1016/j.bbagen.2008.09.001.
View
20.
Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S
. Mineralized tissue cells are a principal source of FGF23. Bone. 2007; 40(6):1565-73.
DOI: 10.1016/j.bone.2007.01.017.
View