: A Method for Quantifying Putative Biotic Associations of Microbes at the Community Level
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
A workflow has been compiled as "qcmi" R package-the uantifying ommunity-level icrobial nteractions-to identify and quantify the putative biotic associations of microbes at the community level from ecological networks.
Citing Articles
mbDriver: identifying driver microbes in microbial communities based on time-series microbiome data.
Tan X, Xue F, Zhang C, Wang T Brief Bioinform. 2024; 25(6).
PMID: 39526854 PMC: 11551971. DOI: 10.1093/bib/bbae580.
Qiu T, Penuelas J, Chen Y, Sardans J, Yu J, Xu Z Imeta. 2024; 3(3):e187.
PMID: 38898982 PMC: 11183171. DOI: 10.1002/imt2.187.
References
1.
Wen T, Xie P, Yang S, Niu G, Liu X, Ding Z
. ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts. Imeta. 2024; 1(3):e32.
PMC: 10989811.
DOI: 10.1002/imt2.32.
View
2.
Yang X, Gomez-Aparicio L, Lortie C, Verdu M, Cavieres L, Huang Z
. Net plant interactions are highly variable and weakly dependent on climate at the global scale. Ecol Lett. 2022; 25(6):1580-1593.
DOI: 10.1111/ele.14010.
View
3.
Stegen J, Lin X, Konopka A, Fredrickson J
. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012; 6(9):1653-64.
PMC: 3498916.
DOI: 10.1038/ismej.2012.22.
View
4.
Fierer N
. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017; 15(10):579-590.
DOI: 10.1038/nrmicro.2017.87.
View
5.
Kurtz Z, Muller C, Miraldi E, Littman D, Blaser M, Bonneau R
. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015; 11(5):e1004226.
PMC: 4423992.
DOI: 10.1371/journal.pcbi.1004226.
View