» Articles » PMID: 38868346

EasyAmplicon: An Easy-to-use, Open-source, Reproducible, and Community-based Pipeline for Amplicon Data Analysis in Microbiome Research

Abstract

It is difficult for beginners to learn and use amplicon analysis software because there are so many software tools to choose from, and all of them need multiple steps of operation. Herein, we provide a cross-platform, open-source, and community-supported analysis pipeline EasyAmplicon. EasyAmplicon has most of the modules needed for an amplicon analysis, including data quality control, merging of paired-end reads, dereplication, clustering or denoising, chimera detection, generation of feature tables, taxonomic diversity analysis, compositional analysis, biomarker discovery, and publication-quality visualization. EasyAmplicon includes more than 30 cross-platform modules and R packages commonly used in the field. All steps of the pipeline are integrated into RStudio, which reduces learning costs, keeps the flexibility of the analysis process, and facilitates personalized analysis. The pipeline is maintained and updated by the authors and editors of WeChat official account "Meta-genome." Our team will regularly release the latest tutorials both in Chinese and English, read the feedback from users, and provide help to them in the WeChat account and GitHub. The pipeline can be deployed on various platforms, and the installation time is less than half an hour. On an ordinary laptop, the whole analysis process for dozens of samples can be completed within 3 h. The pipeline is available at GitHub (https://github.com/YongxinLiu/EasyAmplicon) and Gitee (https://gitee.com/YongxinLiu/EasyAmplicon).

Citing Articles

Captive environments reshape the compositions of carbohydrate active enzymes and virulence factors in wolf gut microbiome.

Wang X, Shang Y, Xing Y, Chen Y, Wu X, Zhang H BMC Microbiol. 2025; 25(1):142.

PMID: 40087549 DOI: 10.1186/s12866-025-03863-2.


Smoking-related gut microbiota alteration is associated with obesity and obesity-related diseases: results from two cohorts with sibling comparison analyses.

Duan Y, Xu C, Wang W, Wang X, Xu N, Zhong J BMC Med. 2025; 23(1):146.

PMID: 40059170 PMC: 11892230. DOI: 10.1186/s12916-025-03969-4.


Benchmarking short-read metagenomics tools for removing host contamination.

Gao Y, Luo H, Lyu H, Yang H, Yousuf S, Huang S Gigascience. 2025; 14.

PMID: 40036691 PMC: 11878760. DOI: 10.1093/gigascience/giaf004.


EasyMetagenome: A user-friendly and flexible pipeline for shotgun metagenomic analysis in microbiome research.

Bai D, Chen T, Xun J, Ma C, Luo H, Yang H Imeta. 2025; 4(1):e70001.

PMID: 40027489 PMC: 11865343. DOI: 10.1002/imt2.70001.


MicrobiomeStatPlots: Microbiome statistics plotting gallery for meta-omics and bioinformatics.

Bai D, Ma C, Xun J, Luo H, Yang H, Lyu H Imeta. 2025; 4(1):e70002.

PMID: 40027478 PMC: 11865346. DOI: 10.1002/imt2.70002.


References
1.
Wang J, Zheng J, Shi W, Du N, Xu X, Zhang Y . Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut. 2018; 67(9):1614-1625. PMC: 6109274. DOI: 10.1136/gutjnl-2018-315988. View

2.
Stewart R, Auffret M, Warr A, Walker A, Roehe R, Watson M . Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol. 2019; 37(8):953-961. PMC: 6785717. DOI: 10.1038/s41587-019-0202-3. View

3.
McDonald D, Price M, Goodrich J, Nawrocki E, DeSantis T, Probst A . An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011; 6(3):610-8. PMC: 3280142. DOI: 10.1038/ismej.2011.139. View

4.
Liu Y, Qin Y, Chen T, Lu M, Qian X, Guo X . A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell. 2020; 12(5):315-330. PMC: 8106563. DOI: 10.1007/s13238-020-00724-8. View

5.
Shen W, Le S, Li Y, Hu F . SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One. 2016; 11(10):e0163962. PMC: 5051824. DOI: 10.1371/journal.pone.0163962. View