6.
Chen C, Zhang W, Ke Y, Jiang L, Hu X
. A highly sensitive fluorescence probe for on-site detection of nerve agent mimic diethylchlorophosphonate DCP. Anal Methods. 2024; 16(4):515-523.
DOI: 10.1039/d3ay02091f.
View
7.
Lee H, Lee Y, Koh C, Phan-Quang G, Han X, Lay C
. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem Soc Rev. 2018; 48(3):731-756.
DOI: 10.1039/c7cs00786h.
View
8.
Mawhinney D, Hamelin E, Fraser R, Silva S, Pavlopoulos A, Kobelski R
. The determination of organophosphonate nerve agent metabolites in human urine by hydrophilic interaction liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2007; 852(1-2):235-43.
DOI: 10.1016/j.jchromb.2007.01.023.
View
9.
Kuca K, Pohanka M
. Chemical warfare agents. EXS. 2010; 100:543-58.
View
10.
Wu K, Rindzevicius T, Schmidt M, Bo Mogensen K, Xiao S, Boisen A
. Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography. Opt Express. 2015; 23(10):12965-78.
DOI: 10.1364/OE.23.012965.
View
11.
Liu X, Li M, Yu X, Shen L, Li W
. Silent region barcode particle arrays for ultrasensitive multiplexed SERS detection. Biosens Bioelectron. 2022; 219:114804.
DOI: 10.1016/j.bios.2022.114804.
View
12.
Farquharson S, Gift A, Maksymiuk P, Inscore F
. Surface-enhanced Raman spectra of VX and its hydrolysis products. Appl Spectrosc. 2005; 59(5):654-60.
DOI: 10.1366/0003702053946100.
View
13.
Juhlin L, Mikaelsson T, Hakonen A, Schmidt M, Rindzevicius T, Boisen A
. Selective surface-enhanced Raman scattering detection of Tabun, VX and Cyclosarin nerve agents using 4-pyridine amide oxime functionalized gold nanopillars. Talanta. 2020; 211:120721.
DOI: 10.1016/j.talanta.2020.120721.
View
14.
Fan C, Hu Z, Mustapha A, Lin M
. Rapid detection of food- and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates. Appl Microbiol Biotechnol. 2011; 92(5):1053-61.
DOI: 10.1007/s00253-011-3634-3.
View
15.
Marakovic N, Knezevic A, Roncevic I, Brazzolotto X, Kovarik Z, Sinko G
. Enantioseparation, in vitro testing, and structural characterization of triple-binding reactivators of organophosphate-inhibited cholinesterases. Biochem J. 2020; 477(15):2771-2790.
DOI: 10.1042/BCJ20200192.
View
16.
Ganesan K, Raza S, Vijayaraghavan R
. Chemical warfare agents. J Pharm Bioallied Sci. 2011; 2(3):166-78.
PMC: 3148621.
DOI: 10.4103/0975-7406.68498.
View
17.
Sinha S, Jones S, Pramanik A, Ray P
. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis. Acc Chem Res. 2016; 49(12):2725-2735.
PMC: 5178832.
DOI: 10.1021/acs.accounts.6b00384.
View
18.
Wu J, Zhu Y, Liu Y, Chen J, Guo L, Xie J
. A novel approach for on-site screening of organophosphorus nerve agents based on DTNB modified AgNPs using surface-enhanced Raman spectrometry. Anal Methods. 2022; 14(43):4292-4299.
DOI: 10.1039/d2ay01307j.
View
19.
Gab J, Melzer M, Kehe K, Richardt A, Blum M
. Quantification of hydrolysis of toxic organophosphates and organophosphonates by diisopropyl fluorophosphatase from Loligo vulgaris by in situ Fourier transform infrared spectroscopy. Anal Biochem. 2008; 385(2):187-93.
DOI: 10.1016/j.ab.2008.11.012.
View
20.
Arduini F, Amine A, Moscone D, Ricci F, Palleschi G
. Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Anal Bioanal Chem. 2007; 388(5-6):1049-57.
DOI: 10.1007/s00216-007-1330-z.
View