Optical Coupling of Individual Air-suspended Carbon Nanotubes to Silicon Microcavities
Overview
Overview
Date
2024 Jun 12
PMID
38866479
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
Carbon nanotubes are a telecom band emitter compatible with silicon photonics, and when coupled to microcavities, they present opportunities for exploiting quantum electrodynamical effects. Microdisk resonators demonstrate the feasibility of integration into the silicon platform. Efficient coupling is achieved using photonic crystal air-mode nanobeam cavities. The molecular screening effect on nanotube emission allows for spectral tuning of the coupling. The Purcell effect of the coupled cavity-exciton system reveals near-unity radiative quantum efficiencies of the excitons in carbon nanotubes.
References
1.
Michler P, Kiraz A, Becher C, Schoenfeld W, Petroff P, Zhang L
. A quantum dot single-photon turnstile device. Science. 2000; 290(5500):2282-5.
DOI: 10.1126/science.290.5500.2282.
View
2.
Noury A, Le Roux X, Vivien L, Izard N
. Enhanced light emission from carbon nanotubes integrated in silicon micro-resonator. Nanotechnology. 2015; 26(34):345201.
DOI: 10.1088/0957-4484/26/34/345201.
View
3.
Perebeinos V, Tersoff J, Avouris P
. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 2005; 5(12):2495-9.
DOI: 10.1021/nl051828s.
View
4.
Gaufres E, Izard N, Le Roux X, Kazaoui S, Marris-Morini D, Cassan E
. Optical microcavity with semiconducting single-wall carbon nanotubes. Opt Express. 2010; 18(6):5740-5.
DOI: 10.1364/OE.18.005740.
View
5.
Tan P, Rozhin A, Hasan T, Hu P, Scardaci V, Milne W
. Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. Phys Rev Lett. 2007; 99(13):137402.
DOI: 10.1103/PhysRevLett.99.137402.
View