6.
Levine J, Simonds E, Bendall S, Davis K, Amir E, Tadmor M
. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell. 2015; 162(1):184-97.
PMC: 4508757.
DOI: 10.1016/j.cell.2015.05.047.
View
7.
Laidlaw B, Craft J, Kaech S
. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat Rev Immunol. 2016; 16(2):102-11.
PMC: 4860014.
DOI: 10.1038/nri.2015.10.
View
8.
Sibener L, Fernandes R, Kolawole E, Carbone C, Liu F, McAffee D
. Isolation of a Structural Mechanism for Uncoupling T Cell Receptor Signaling from Peptide-MHC Binding. Cell. 2018; 174(3):672-687.e27.
PMC: 6140336.
DOI: 10.1016/j.cell.2018.06.017.
View
9.
Kilpatrick R, Rickabaugh T, Hultin L, Hultin P, Hausner M, Detels R
. Homeostasis of the naive CD4+ T cell compartment during aging. J Immunol. 2008; 180(3):1499-507.
PMC: 2940825.
DOI: 10.4049/jimmunol.180.3.1499.
View
10.
Richer M, Nolz J, Harty J
. Pathogen-specific inflammatory milieux tune the antigen sensitivity of CD8(+) T cells by enhancing T cell receptor signaling. Immunity. 2012; 38(1):140-52.
PMC: 3557574.
DOI: 10.1016/j.immuni.2012.09.017.
View
11.
Ashhurst T, Marsh-Wakefield F, Putri G, Spiteri A, Shinko D, Read M
. Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre. Cytometry A. 2021; 101(3):237-253.
DOI: 10.1002/cyto.a.24350.
View
12.
Gossel G, Hogan T, Cownden D, Seddon B, Yates A
. Memory CD4 T cell subsets are kinetically heterogeneous and replenished from naive T cells at high levels. Elife. 2017; 6.
PMC: 5426903.
DOI: 10.7554/eLife.23013.
View
13.
Pan Y, Aiamkitsumrit B, Bartolo L, Wang Y, Lavery C, Marc A
. Vaccination reshapes the virus-specific T cell repertoire in unexposed adults. Immunity. 2021; 54(6):1245-1256.e5.
PMC: 8192456.
DOI: 10.1016/j.immuni.2021.04.023.
View
14.
Bartolo L, Afroz S, Pan Y, Xu R, Williams L, Lin C
. SARS-CoV-2-specific T cells in unexposed adults display broad trafficking potential and cross-react with commensal antigens. Sci Immunol. 2022; 7(76):eabn3127.
PMC: 9348748.
DOI: 10.1126/sciimmunol.abn3127.
View
15.
Junge S, Kloeckener-Gruissem B, Zufferey R, Keisker A, Salgo B, Fauchere J
. Correlation between recent thymic emigrants and CD31+ (PECAM-1) CD4+ T cells in normal individuals during aging and in lymphopenic children. Eur J Immunol. 2007; 37(11):3270-80.
DOI: 10.1002/eji.200636976.
View
16.
Caccamo N, Joosten S, Ottenhoff T, Dieli F
. Atypical Human Effector/Memory CD4 T Cells With a Naive-Like Phenotype. Front Immunol. 2018; 9:2832.
PMC: 6287111.
DOI: 10.3389/fimmu.2018.02832.
View
17.
Buzon M, Sun H, Li C, Shaw A, Seiss K, Ouyang Z
. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat Med. 2014; 20(2):139-42.
PMC: 3959167.
DOI: 10.1038/nm.3445.
View
18.
Fraser K, Schenkel J, Jameson S, Vezys V, Masopust D
. Preexisting high frequencies of memory CD8+ T cells favor rapid memory differentiation and preservation of proliferative potential upon boosting. Immunity. 2013; 39(1):171-83.
PMC: 3979587.
DOI: 10.1016/j.immuni.2013.07.003.
View
19.
Swain S, McKinstry K, Strutt T
. Expanding roles for CD4⁺ T cells in immunity to viruses. Nat Rev Immunol. 2012; 12(2):136-48.
PMC: 3764486.
DOI: 10.1038/nri3152.
View
20.
Kunzli M, Masopust D
. CD4 T cell memory. Nat Immunol. 2023; 24(6):903-914.
PMC: 10343737.
DOI: 10.1038/s41590-023-01510-4.
View