6.
Riesenhuber M, Poggio T
. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999; 2(11):1019-25.
DOI: 10.1038/14819.
View
7.
Henry C, Kohn A
. Spatial contextual effects in primary visual cortex limit feature representation under crowding. Nat Commun. 2020; 11(1):1687.
PMC: 7125172.
DOI: 10.1038/s41467-020-15386-7.
View
8.
Bar M
. Visual objects in context. Nat Rev Neurosci. 2004; 5(8):617-29.
DOI: 10.1038/nrn1476.
View
9.
Oliva A, Torralba A
. The role of context in object recognition. Trends Cogn Sci. 2007; 11(12):520-7.
DOI: 10.1016/j.tics.2007.09.009.
View
10.
Bar M, Kassam K, Ghuman A, Boshyan J, Schmid A, Schmidt A
. Top-down facilitation of visual recognition. Proc Natl Acad Sci U S A. 2006; 103(2):449-54.
PMC: 1326160.
DOI: 10.1073/pnas.0507062103.
View
11.
Kar K, DiCarlo J
. Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron. 2020; 109(1):164-176.e5.
DOI: 10.1016/j.neuron.2020.09.035.
View
12.
Ren S, He K, Girshick R, Sun J
. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell. 2016; 39(6):1137-1149.
DOI: 10.1109/TPAMI.2016.2577031.
View
13.
Rajalingham R, Issa E, Bashivan P, Kar K, Schmidt K, DiCarlo J
. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks. J Neurosci. 2018; 38(33):7255-7269.
PMC: 6096043.
DOI: 10.1523/JNEUROSCI.0388-18.2018.
View
14.
McKee J, Riesenhuber M, Miller E, Freedman D
. Task dependence of visual and category representations in prefrontal and inferior temporal cortices. J Neurosci. 2014; 34(48):16065-75.
PMC: 4244472.
DOI: 10.1523/JNEUROSCI.1660-14.2014.
View
15.
Lauer T, Cornelissen T, Draschkow D, Willenbockel V, Vo M
. The role of scene summary statistics in object recognition. Sci Rep. 2018; 8(1):14666.
PMC: 6168578.
DOI: 10.1038/s41598-018-32991-1.
View
16.
Majaj N, Hong H, Solomon E, DiCarlo J
. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance. J Neurosci. 2015; 35(39):13402-18.
PMC: 4588611.
DOI: 10.1523/JNEUROSCI.5181-14.2015.
View
17.
Cadena S, Denfield G, Walker E, Gatys L, Tolias A, Bethge M
. Deep convolutional models improve predictions of macaque V1 responses to natural images. PLoS Comput Biol. 2019; 15(4):e1006897.
PMC: 6499433.
DOI: 10.1371/journal.pcbi.1006897.
View
18.
Pospisil D, Pasupathy A, Bair W
. 'Artiphysiology' reveals V4-like shape tuning in a deep network trained for image classification. Elife. 2018; 7.
PMC: 6335056.
DOI: 10.7554/eLife.38242.
View
19.
Kar K, DiCarlo J
. The Quest for an Integrated Set of Neural Mechanisms Underlying Object Recognition in Primates. Annu Rev Vis Sci. 2024; 10(1):91-121.
DOI: 10.1146/annurev-vision-112823-030616.
View
20.
Tsao D, Schweers N, Moeller S, Freiwald W
. Patches of face-selective cortex in the macaque frontal lobe. Nat Neurosci. 2008; 11(8):877-9.
PMC: 8123225.
DOI: 10.1038/nn.2158.
View