6.
Dole M, McLAREN A
. The free energy, heat and entropy of sorption of water vapor by proteins and high polymers. J Am Chem Soc. 2010; 69(3):651-7.
DOI: 10.1021/ja01195a054.
View
7.
Banisheykholeslami F, Hosseini M, Najafpour Darzi G
. Design of PAMAM grafted chitosan dendrimers biosorbent for removal of anionic dyes: Adsorption isotherms, kinetics and thermodynamics studies. Int J Biol Macromol. 2021; 177:306-316.
DOI: 10.1016/j.ijbiomac.2021.02.118.
View
8.
Zhao X, Bu X, Wu T, Zheng S, Wang L, Feng P
. Selective anion exchange with nanogated isoreticular positive metal-organic frameworks. Nat Commun. 2013; 4:2344.
DOI: 10.1038/ncomms3344.
View
9.
Nethaji S, Sivasamy A
. Adsorptive removal of an acid dye by lignocellulosic waste biomass activated carbon: equilibrium and kinetic studies. Chemosphere. 2010; 82(10):1367-72.
DOI: 10.1016/j.chemosphere.2010.11.080.
View
10.
Qurrat-Ul-Ain , Khatoon J, Raza Shah M, Malik M, Khan I, Khurshid S
. Convenient pH-responsive removal of Acid Black 1 by green l-histidine/iron oxide magnetic nanoadsorbent from water: performance and mechanistic studies. RSC Adv. 2022; 9(6):2978-2996.
PMC: 9059959.
DOI: 10.1039/c8ra09279f.
View
11.
Sepulveda L, Fernandez K, Contreras E, Palma C
. Adsorption of dyes using peat: equilibrium and kinetic studies. Environ Technol. 2004; 25(9):987-96.
DOI: 10.1080/09593332508618390.
View
12.
Martin Jr R, Robert Baillod C, Mihelcic J
. Low-temperature inhibition of the activated sludge process by an industrial discharge containing the azo dye acid black 1. Water Res. 2004; 39(1):17-28.
DOI: 10.1016/j.watres.2004.07.031.
View
13.
Khamis F, Hegab H, Banat F, Arafat H, Hasan S
. Comprehensive review on pH and temperature-responsive polymeric adsorbents: Mechanisms, equilibrium, kinetics, and thermodynamics of adsorption processes for heavy metals and organic dyes. Chemosphere. 2023; 349:140801.
DOI: 10.1016/j.chemosphere.2023.140801.
View
14.
Sun D, Zhang X, Wu Y, Liu X
. Adsorption of anionic dyes from aqueous solution on fly ash. J Hazard Mater. 2010; 181(1-3):335-42.
DOI: 10.1016/j.jhazmat.2010.05.015.
View
15.
Zhou Q
. Chemical pollution and transport of organic dyes in water-soil-crop systems of the Chinese Coast. Bull Environ Contam Toxicol. 2001; 66(6):784-93.
DOI: 10.1007/s001280077.
View
16.
Painer F, Baldermann A, Gallien F, Eichinger S, Steindl F, Dohrmann R
. Synthesis of Zeolites from Fine-Grained Perlite and Their Application as Sorbents. Materials (Basel). 2022; 15(13).
PMC: 9267695.
DOI: 10.3390/ma15134474.
View
17.
Ghanbari M, Salavati-Niasari M
. TlCdI Nanostructures: Facile Sonochemical Synthesis and Photocatalytic Activity for Removal of Organic Dyes. Inorg Chem. 2018; 57(18):11443-11455.
DOI: 10.1021/acs.inorgchem.8b01293.
View
18.
Priya B, Uma L, Ahamed A, Subramanian G, Prabaharan D
. Ability to use the diazo dye, C.I. Acid Black 1 as a nitrogen source by the marine cyanobacterium Oscillatoria curviceps BDU92191. Bioresour Technol. 2011; 102(14):7218-23.
DOI: 10.1016/j.biortech.2011.02.117.
View
19.
Wang Y, Xia G, Wu C, Sun J, Song R, Huang W
. Porous chitosan doped with graphene oxide as highly effective adsorbent for methyl orange and amido black 10B. Carbohydr Polym. 2014; 115:686-93.
DOI: 10.1016/j.carbpol.2014.09.041.
View
20.
Mathew R, Cooney R, Zujovic Z, Doyle C, Wheelwright W, De Silva K
. A Sustained Release Anchored Biocide System Utilizing the Honeycomb Cellular Structure of Expanded Perlite. ACS Appl Bio Mater. 2022; 1(6):1959-1971.
DOI: 10.1021/acsabm.8b00495.
View