» Articles » PMID: 38846492

Research Progress on the Fanconi Anemia Signaling Pathway in Non-obstructive Azoospermia

Overview
Specialty Endocrinology
Date 2024 Jun 7
PMID 38846492
Authors
Affiliations
Soon will be listed here.
Abstract

Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.

References
1.
Kato Y, Alavattam K, Sin H, Meetei A, Pang Q, Andreassen P . FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis. Hum Mol Genet. 2015; 24(18):5234-49. PMC: 4550819. DOI: 10.1093/hmg/ddv244. View

2.
Moynahan M, Jasin M . Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010; 11(3):196-207. PMC: 3261768. DOI: 10.1038/nrm2851. View

3.
Domingues-Silva B, Silva B, Azzalin C . ALTernative Functions for Human FANCM at Telomeres. Front Mol Biosci. 2019; 6:84. PMC: 6743340. DOI: 10.3389/fmolb.2019.00084. View

4.
Chesner L, Degner A, Sangaraju D, Yomtoubian S, Wickramaratne S, Malayappan B . Cellular Repair of DNA-DNA Cross-Links Induced by 1,2,3,4-Diepoxybutane. Int J Mol Sci. 2017; 18(5). PMC: 5454995. DOI: 10.3390/ijms18051086. View

5.
Fu C, Begum K, Jordan P, He Y, Overbeek P . Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice. PLoS One. 2016; 11(8):e0159800. PMC: 4972424. DOI: 10.1371/journal.pone.0159800. View