6.
Galangau O, Norel L, Rigaut S
. Metal complexes bearing photochromic ligands: photocontrol of functions and processes. Dalton Trans. 2021; 50(48):17879-17891.
DOI: 10.1039/d1dt03397b.
View
7.
Chan J, Lam W, Wong H, Wong W, Yam V
. Tunable photochromism in air-stable, robust dithienylethene-containing phospholes through modifications at the phosphorus center. Angew Chem Int Ed Engl. 2013; 52(44):11504-8.
DOI: 10.1002/anie.201304827.
View
8.
Lamansky S, Djurovich P, Murphy D, Lee H, Adachi C, Burrows P
. Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J Am Chem Soc. 2001; 123(18):4304-12.
DOI: 10.1021/ja003693s.
View
9.
Yang X, Zhou G, Wong W
. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices. Chem Soc Rev. 2015; 44(23):8484-575.
DOI: 10.1039/c5cs00424a.
View
10.
Zhao W, Carreira E
. Facile one-pot synthesis of photochromic pyrans. Org Lett. 2003; 5(22):4153-4.
DOI: 10.1021/ol035599x.
View
11.
Yang X, Xu S, Zhang Y, Zhu C, Cui L, Zhou G
. Narrowband Pure Near-Infrared (NIR) Ir(III) Complexes for Solution-Processed Organic Light-Emitting Diode (OLED) with External Quantum Efficiency Over 16 . Angew Chem Int Ed Engl. 2023; 62(41):e202309739.
DOI: 10.1002/anie.202309739.
View
12.
Gnanasekaran P, Yuan Y, Lee C, Zhou X, Jen A, Chi Y
. Realization of Highly Efficient Red Phosphorescence from Bis-Tridentate Iridium(III) Phosphors. Inorg Chem. 2019; 58(16):10944-10954.
DOI: 10.1021/acs.inorgchem.9b01383.
View
13.
Guerin J, Leaustic A, Delbaere S, Berthet J, Guillot R, Ruckebusch C
. A multifunctional photoswitch: 6π electrocyclization versus ESIPT and metalation. Chemistry. 2014; 20(38):12279-88.
DOI: 10.1002/chem.201402448.
View
14.
Jing Y, Li N, Cao X, Wu H, Miao J, Chen Z
. Precise modulation of multiple resonance emitters toward efficient electroluminescence with pure-red gamut for high-definition displays. Sci Adv. 2023; 9(30):eadh8296.
PMC: 10381944.
DOI: 10.1126/sciadv.adh8296.
View
15.
Yang X, Zhou X, Zhang Y, Li D, Li C, You C
. Blue Phosphorescence and Hyperluminescence Generated from Imidazo[4,5-b]pyridin-2-ylidene-Based Iridium(III) Phosphors. Adv Sci (Weinh). 2022; 9(25):e2201150.
PMC: 9443441.
DOI: 10.1002/advs.202201150.
View
16.
Liu W, Zhang C, Alessandri R, Diroll B, Li Y, Liang H
. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat Mater. 2023; 22(6):737-745.
DOI: 10.1038/s41563-023-01529-w.
View
17.
Lv G, Cui B, Lan H, Wen Y, Sun A, Yi T
. Diarylethene based fluorescent switchable probes for the detection of amyloid-β pathology in Alzheimer's disease. Chem Commun (Camb). 2014; 51(1):125-8.
DOI: 10.1039/c4cc07656g.
View
18.
Poon C, Lam W, Wong H, Yam V
. A versatile photochromic dithienylethene-containing β-diketonate ligand: near-infrared photochromic behavior and photoswitchable luminescence properties upon incorporation of a boron(III) center. J Am Chem Soc. 2010; 132(40):13992-3.
DOI: 10.1021/ja105537j.
View
19.
Chen S, Guo Z, Zhu S, Shi W, Zhu W
. A multiaddressable photochromic bisthienylethene with sequence-dependent responses: construction of an INHIBIT logic gate and a keypad lock. ACS Appl Mater Interfaces. 2013; 5(12):5623-9.
DOI: 10.1021/am4009506.
View
20.
Fu Y, Liu H, Tang B, Zhao Z
. Realizing efficient blue and deep-blue delayed fluorescence materials with record-beating electroluminescence efficiencies of 43.4. Nat Commun. 2023; 14(1):2019.
PMC: 10086064.
DOI: 10.1038/s41467-023-37687-3.
View